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A mathematician

Dirichlet (1805-1859)
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... and his reverse

Telhcirid (5081-9581)
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1. Digital properties of prime numbers
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Radix representation of integers

Take
g E€EL>

as the base of the radix representation of integers.

Base-g representation

Every n € N is uniquely represented as
n=3 mg' = (-1 no)g)
0<i<N
with
no,.-.,nny—1 €{0,...,g—1} and ny_1 #0.
For the above base-g representation of n,

m The numbers ng,...,ny_1 are called the digits of n.
m The number N is called the length of n.
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Digital properties of prime numbers

Notation: In this talk, the letter p always denotes a prime.

Theorem 1 (Mauduit-Rivat (2010))

For any base g € Z>5 and a, g € N satisfying

(37‘7=g—1): 17

we have
#{p | (sum of digits of p) = a (mod q)} = oco.

Note: (sum of digits of p) = p (mod g — 1).

Theorem 2 (Maynard (2022))

For any base g > 10 and ap € {0,...,g — 1}, we have

#{p | a0 & {digits of p}} = co.

(An asymptotic formula is also obtained if g > 12.)

Asymptotic formulas are also obtained for both of the above results.
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Digital reverse of integers

Definition 1 (Digital reverse)

For n € N with the base-g representation

n:(nN_1~-~n0)(g): Z nig’  with

0<i<N

no,‘..,anle{O,u-,g_l}’?
nN*l#Ov

we define its digital reverse ‘n by

Fom (o= 3 mwoiag = 30 mgh il
0<i<N 0<i<N

i.e. 7 is the integer obtained by reading n “backwards”.

Definition 2 (Palindromic number ([B132%4))

g a a def
n is palindromic <= n= .

7/28



Conjectures on the digital reverses of primes

There are infinitely many palindromic primes, i.e.

#{plp=P}=co.

(A palindromic prime is a prime which is palindromic.)

There are infinitely many primes whose digital reverse is also prime, i.e.
— q
#{p|'p : prime} = oo.

(A reversible prime is a prime whose digital reverse is also a prime.)

Theorem 3 (Tuxanidy—Panario (2023))

For any g > 2, there are infinitely many palindromic 6-almost primes, i.e.
— = —
#{n| n="n and Q(n) <6} = o,
where Q(n) is the number of prime factors of n counted with multiplicity.
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2. Main Results
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Dirichlet's theorem on A.P.

Theorem 4 (Dirichlet’s theorem on A.P. (1837))
For any a, g € N satisfying

(a,9) =1,
we have
#{p | p=a (mod q)} = oo.
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Dirichlet's theorem on A.P. and Telhcirid's theorem on A.P.

Theorem 4 (Dirichlet’s theorem on A.P. (1837))
For any a, g € N satisfying

(a,9) =1,
we have
#{p | p=a (mod q)} = oo.

Main Theorem 1 (Telhcirid's theorem on A.P. by Bhowmik-S. (2024+))

For any base g > 31699 and a, g € N satisfying

(*) (37q7g2_1):1 and gf(a,q),

we have
#{p| P =a (mod q)} = 0.
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We use decimal (base-10) representation in everyday life because we have 10 fingers in our
hands.
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hands. If we had > 31699 fingers in our hands...

~» Senju-Kannon (FF#1E): A goddess of mercy in Bhuddhism having 1000 hands!
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Oh... is it a scam?

But the statue of Senju-Kannon in Sanjusangendo (in Kyoto) has only 42 hands so
42 x 5 =210

fingers...
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Ah! That's enough!

Still, there are 1001 Senju-Kannon statues in Sanjusangendo so
42 x 5 x 1001 = 210210 > 31699

fingers! So let's use base-210210 representation with the aid of Senju-KannonS.
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Conditions in Telhcirid's theorem on A.P.

Main Theorem 1 (Telhcirid’s theorem on A.P. by Bhowmik-S. (2024+))
For any base g > 31699 and a, g € N satisfying

(*) (37q7g2_1):1 and gf(a,q),

we have
#{p| P =a (mod q)} = 0.

Why do we need the conditions (*)?
m By definition, <E's lowest digit is # 0. Thus,
F20(modg)and B =a(modq) ~ g1(aq).
m By using g7 = g (mod g2 — 1), we get

p= > ng =g NN 3" g7 = gD (mod g° — 1)
0<i<N 0<i<N
and so

P=a(modq) ~ p=g M Va(mod(q,6°-1) ~ (a,98°-1)=1
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Siegel-Walfisz theorem

Let
m(x) =#{p<x} and w(x;a,q) =#{p<x|p=a(modq)}.

Also, let ¢ be the Euler totient function.

Theorem 5 (Siegel-Walfisz theorem (1936))

For any a,q € N with (a,q) =1 and x, A > 1, we have
1 —A
w(x;a,q) = ——m(x) + Oa(w(x)(logx)™").
©(q)

Note that this result is meaningful only for g < (log x)” (roughly).
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Zsiflaw—Legeis theorem

Let

Gy ={nec[g" 1 g") | n#0 (mod g)},
Sn(a,q) = #{p €9y | P = a (mod q)}.

We then have the following quantitative result:

Main Theorem 2 (Zsiflaw—Legeis theorem by Bhowmik-S. (2024+))

For any base g > 31699 and a, g € N satisfying

(%) (a,9,8°—1)=1 and g{(a,q),

we have

_ pglaq) gV 1
Stv(a, q) = gT oz (&) (1 + O(N)) + Og(g" exp(—cV'N)),

where ¢ = ¢(g) > 0 is some constant and

(q,g)) (9.8 —1)
©((q,82 1))

Note that this result is meaningful only for g < exp(cv/N) (roughly).
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Comparison: Siegel-Walfisz vs. Zsiflaw—Legeis

Siegel-Walfisz Zsiflaw—Legeis
Length L of the range X s gV
log L log x s N
Admissible level of S-W (log x)A s NA
Admissible level of Z-L | exp(cy/logx) e~ exp(cv/N)

m Zsiflaw—Legeis has a wider range of modulus than Siegel-Walfisz!
m The implication is (probably)
“primality and digital property are rather uncorrelated” ...?
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3. Proof of theorem: Setting up discrete circle method
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Expansion by the additive characters (mod q)

Write e(x) := exp(2mix). By the orthogonality of additive characters (mod q), i.e

= (o).

k (mod q)

Lr=a (mod q) —

1
q
we get

1 k k
Sn(a, q) = g 1== E e(—fa> E e<f$>.
PEYN q k (mod q) q PEYN aq
p=a (mod q)

By rewriting the fractions % to the reduced fractions

k
Eo 8 with (c,s) =1,
q s

we get

where



Extract the main term

We make two observations:
m As we saw in the necessary conditions (x) of Telhcirid's theorem, we know

P =a(modg?—1) < p= g N1y (mod g2 —1).
so the (mod g2 — 1) condition on %5 is reduced to the (mod g2 — 1) condition on p.
m Take the least M with (g,g") | gM. Since
n=(nn_1no)g = T =(no nn_1)g) = ("n—m " nn—1)(g) (mod g"),

we have
= (am—1- ++a0)(g) (mod gM)
< né€(a--- aM_l)(g)gN’M +1[0,g" M1

so the (mod gM) condition on ‘o is reduced to the “short interval” condition on p.
Expecting the other conditions behave randomly, we decompose the sum as

C
Fuaa) =23 3 e(-Sa) Y ¢(£%)
s\q c (mod s) s PEYN s
= ! Z +1 Z =M+ E, say.
T s@@-1e") T sl
st(g®—1)g"
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Calculation of the main term

The main term can be calculated backwards as

! c
M= Z Z ——a Z e 7<F
q s|(g,(g2—1)gN) c (mod s) ( ) pEDN (S )
1 . ) B
= = oo o[k«
q k (mod (mz(g:Z—l)gN)) ( (q7 (g2 - 1)gN) > PEZgN ((q7 (g2 _ 1)gN) )
_ (a.(8 = 1)g")

>
q PEYN
P=a (mod (q,(8>—~1)g"))
The last sum can be calculated by using
Prime number theorem in A.P. of (mod g2 — 1).
In order to deal with the (mod (g, g")) condition, PNT in A.P. over short intervals

x+1[0,g" M) with some x € [0, g") ((a,g") | &™)

seems neccessary. However, (q,g") is now small enough to use just

1
n(x;a,q) = ﬁﬂ—(X) + Og(xexp(—cqv/logx)) with q=g°—1<, 1.
©(q
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Circle method for the remainder term

We just bound the remainder term pointwise as

el r m (s
9 s\q c (mod s) s
stg®—1)g"

C
< m |2 e(C7)
st(g>~1)g" PN
(c,5)=1

Thus, our task is to bound the sum

c
)
PEYN
By the orthogonality on T, we have

R= /:( 3 e(focp)> ( 3 e(an+ §<F>>da — /OllSp(fa)F(a,f)da

pEYN neYy

with the exponential sums

Sp(a) = Z e(ap) and F(o,B) = Z e(an+ 7).

PIM neEYy
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The Farey dissection

We employ the diophantine approximation

b
a=—+n with (br)=1and|n <r 2
r

and define the major and minor arcs
M:={aec[0,1)]|r,|n|:small} and m:=[0,1)\ M.

We then decompose the integral as

1
R:/ 5p(fa)F(oz,§)da:/ +/ —: R + Ru.
0 m m

We bound Ryy, Rm in two different manners.
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4. Treatment of the major arc
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On the major arc, we estimate the exponential sum over primes trivially

Sp(a) = > e(ap) < g"
PEYN

while we use the fact that the major arc is very small
(M) < g~V exp(cV/N) (p : Lebesgue measure).

This gives
Ron = [ Se(~a)F(a, S)da < u(ag" max F(a, )
m a€lo,1)
< exp(cV'N) max_|F(a, €)|.
«€l0,1) s

We then prepare the non-trivial L°°-bound (pointwise bound) of

Fla, €)= > e(an+ €)= > e(an + <n)
nEYy S

by using the cancellation caused by the g side.

24 /28



Product formula

Consider “the exponential sum over digits”, i.e.

o(a) = Z e(an).
0<n<g
For n represented as
e S mg o~ = Y me,

0<i<N 0<i<N
we have ] )

o +pn=>" (ag"" "+ g')n;.

0<i<N

Accordingly, we (essentially) have a factorization

N—1
F(a, B) ~ > e( > (ag”*"*wﬁg")n,-) =[] ¢lag" "1 + Bg’).
i=0

0<ng,...,ny—1<g "O<i<N

This “product formula” is the key of the estimate for both of Ryy and Rn.
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Using the product formula to the L°°-bound of F(«, 3)

Note that the consecutive argument of the product formula satisfies

Beg'(g” —1) = (—1)- (ag" "+ Bg’) + g - (ag" TV 4 pg™t)
and so the triangle inequality of ||| := min,cz |a — n| implies

18g'(g* =1 <1-lag" """ + B¢’ H +g - lagh~(FD=1 4 ggth|

N g gD 4 g ) > g (6 ~ 1),

~ max(flag

For small ||, we have approximations (the values of ¢, may change)

gllall - §(rgllal)® +
llall = §(mllall)® + -

sing||a|

l$(a)l =

= 2 2
. ~ g(1 - cgllal*) ~ g exp(—cgllal|?)
sin |||

and so, by pairing the consecutive indices, the product formula essentially gives

t= N—i—1 i N (g2 —1)gic|]?
Fla,$) = H¢(ag Ty cg<e exp<fcg Z Y )
i=0

0<i<N

21y,
We thus need some observation on (é”# (mod 1).
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A bit about the distribution of & =18'c 1)g < (mod 1)

) )
Suppose that we have a sad news at the ip-th step: “ %H is small” as
(&2 —Dghe| _ 1
s ~ 2g

It is also a good news: “we can controll the next value” as

g H (g —ghc| .1 H (8 —1)ght'c

S

2 i
g —1)ghc
= 5 &=t

How long can this continues? Assume that this process continues L times so that

H (g —1)g*tc

erte| (g2 e

S

and recall that s { (g2 — 1)g" and (c,s) = 1. We then have

_ H (g2 _ l)g"UJrLc
S

1

2_q io
(g Jg°c <= ~ L<xlogs.

S

g
s

SgL~H

21y,
Thus, once per log s steps of i, we have H%H > %
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The L*°-bound of F(«, )

By combining the estimate given by the product formula

(82 —Dgic
S

)

Fla, 5) < gV exp<fcg Z
0<i<N

2 i
and our small knowledge on the distribution of w (mod 1):

1
> =
=2

(g2 —1)g'c
S

)

once per log s steps of i, we have
we get the bound
N N
F(a, <) < gV exp(—cg—) < gVNexp (—Cg—)
s log s log g

This gives a non-trivial L>°-bound of F(a, 8).
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5. Treatment of the minor arc
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Circle method for binary additive problem?

A general expectation on the size of exponential sum is the “square-root” cancellation
. .. 1
|(exponential sum)| < (trivial bound)2

which follows by some probabilistic argument with Parseval’s formula.

By recalling the measure of 9t is very small, we should have

NN
2 .g2 > gV > (main term).

[ Isp(-lIF(. $)lda > u(m) - ¢
m
This implies our circle method seems fail...?

We can indeed use the product formula (shown in the next slide)

N—-1
F(a,8) = | #(ag" """ + B¢

i=0

for overcoming this difficulty. We shall show the L!-bound

1
/ |F(a, B)|da < (Ag log g)V (Ag > 0 : constant),
0

which shows a bound stronger than the square-root cancellation on average over a.
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The L'-bound of F(a

Recall a bound based on the summation formula for geometric series

Z e(an)

0<n<g

. 1 .
< min(g, W\> where o] = min o].

By using this bound in the product formula, we get

N—-1 ) . — 1
|F(e,B) = [ 16(cg" "1 + g’ < ( i >
Lg II gN=i=1 1 Bgi||

i=0

N

By approximating the integral by the Riemann sum with mesh of width g=", we get

1
/0|F(a,m|da<<giN SO IF(hg N, ).

0<h<gN

By using the above bound based on the product formula, we get

1
/|Fa6)\da<< > Hm'"<g7m)

0<h<gN i=0
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What we obtained so far:
[ | :
|F(a, B)|da <« — min(g,%).
—(i+1)
0 87 o<hagh i=0 llhg =t + Be’|

We now express h by the base-g representation as

h= " hig/ with hy,....hy_1€{0,...,g -1},
0<j<N
where hy_1 is now not necessarily non-zero. We then have
hg= D = N~ higl =) = hig=! 4 5(ho, ..., hi_1) (mod 1).
0<j<N

lower order terms

Thus, essentially (ignoring 8g’ and §(ho, ..., hi_1)), we have

1 1 N—1 . 1
‘/0 |F(a, B)|da <« g—N Z H m|n<g, 7||hig_1H)

0<hg,....hy_1<g i=0

1 1 N
= (7 Z min(g, 771>> < (Aglogg)V.
805, lhg =]
Note: We may ignore g’ and §(ho, ..., h;_1) (to some extent) by

m Taking the summation in the order Zho s Zthl'
m Remove the effect of Bg’ and §(ho, ..., hi_1) by shifting the summation variable.
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