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A mathematician

Dirichlet (1805–1859)
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... and his reverse

Telhcirid (5081–9581)
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1. Digital properties of prime numbers
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Radix representation of integers

Take
g ∈ Z≥2

as the base of the radix representation of integers.

Base-g representation

Every n ∈ N is uniquely represented as

n =
∑

0≤i<N

nig
i =: (nN−1 · · · n0)(g)

with
n0, . . . , nN−1 ∈ {0, . . . , g − 1} and nN−1 ̸= 0.

For the above base-g representation of n,

The numbers n0, . . . , nN−1 are called the digits of n.

The number N is called the length of n.

5 / 28



Digital properties of prime numbers

Notation: In this talk, the letter p always denotes a prime.

Theorem 1 (Mauduit–Rivat (2010))

For any base g ∈ Z≥2 and a, q ∈ N satisfying

(a, q, g − 1) = 1,

we have
#{p | (sum of digits of p) ≡ a (mod q)} =∞.

Note: (sum of digits of p) ≡ p (mod g − 1).

Theorem 2 (Maynard (2022))

For any base g ≥ 10 and a0 ∈ {0, . . . , g − 1}, we have

#{p | a0 ̸∈ {digits of p}} =∞.

(An asymptotic formula is also obtained if g ≥ 12.)

Asymptotic formulas are also obtained for both of the above results.
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Digital reverse of integers

Definition 1 (Digital reverse)

For n ∈ N with the base-g representation

n = (nN−1 · · · n0)(g) =
∑

0≤i<N

nig
i with

{
n0, . . . , nN−1 ∈ {0, . . . , g − 1},

nN−1 ̸= 0,

we define its digital reverse ←−n by

←−n := (n0 · · · nN−1)(g) =
∑

0≤i<N

nN−i−1g
i =

∑
0≤i<N

nig
N−i−1,

i.e. ←−n is the integer obtained by reading n “backwards”.

Definition 2 (Palindromic number (回文数))

n is palindromic
def⇐⇒ n =←−n .
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Conjectures on the digital reverses of primes

Conjecture 1

There are infinitely many palindromic primes, i.e.

#{p | p =←−p } =∞.

(A palindromic prime is a prime which is palindromic.)

Conjecture 2

There are infinitely many primes whose digital reverse is also prime, i.e.

#{p | ←−p : prime} =∞.

(A reversible prime is a prime whose digital reverse is also a prime.)

Theorem 3 (Tuxanidy–Panario (2023))

For any g ≥ 2, there are infinitely many palindromic 6-almost primes, i.e.

#{n | n =←−n and Ω(n) ≤ 6} =∞,

where Ω(n) is the number of prime factors of n counted with multiplicity.
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2. Main Results
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Dirichlet’s theorem on A.P.

and Telhcirid’s theorem on A.P.

Theorem 4 (Dirichlet’s theorem on A.P. (1837))

For any a, q ∈ N satisfying
(a, q) = 1,

we have
#{p | p ≡ a (mod q)} =∞.

Main Theorem 1 (Telhcirid’s theorem on A.P. by Bhowmik–S. (2024+))

For any base g ≥ 31699 and a, q ∈ N satisfying

(∗) (a, q, g2 − 1) = 1 and g ∤ (a, q),

we have
#{p | ←−p ≡ a (mod q)} =∞.

We use decimal (base-10) representation in everyday life because we have 10 fingers in our
hands. If we had ≥ 31699 fingers in our hands...

; Senju-Kannon (千手観音): A goddess of mercy in Bhuddhism having 1000 hands!

10 / 28



Dirichlet’s theorem on A.P. and Telhcirid’s theorem on A.P.

Theorem 4 (Dirichlet’s theorem on A.P. (1837))

For any a, q ∈ N satisfying
(a, q) = 1,

we have
#{p | p ≡ a (mod q)} =∞.

Main Theorem 1 (Telhcirid’s theorem on A.P. by Bhowmik–S. (2024+))

For any base g ≥ 31699 and a, q ∈ N satisfying

(∗) (a, q, g2 − 1) = 1 and g ∤ (a, q),

we have
#{p | ←−p ≡ a (mod q)} =∞.

We use decimal (base-10) representation in everyday life because we have 10 fingers in our
hands. If we had ≥ 31699 fingers in our hands...

; Senju-Kannon (千手観音): A goddess of mercy in Bhuddhism having 1000 hands!

10 / 28



Dirichlet’s theorem on A.P. and Telhcirid’s theorem on A.P.

Theorem 4 (Dirichlet’s theorem on A.P. (1837))

For any a, q ∈ N satisfying
(a, q) = 1,

we have
#{p | p ≡ a (mod q)} =∞.

Main Theorem 1 (Telhcirid’s theorem on A.P. by Bhowmik–S. (2024+))

For any base g ≥ 31699 and a, q ∈ N satisfying

(∗) (a, q, g2 − 1) = 1 and g ∤ (a, q),

we have
#{p | ←−p ≡ a (mod q)} =∞.

We use decimal (base-10) representation in everyday life because we have 10 fingers in our
hands.

If we had ≥ 31699 fingers in our hands...

; Senju-Kannon (千手観音): A goddess of mercy in Bhuddhism having 1000 hands!

10 / 28



Dirichlet’s theorem on A.P. and Telhcirid’s theorem on A.P.

Theorem 4 (Dirichlet’s theorem on A.P. (1837))

For any a, q ∈ N satisfying
(a, q) = 1,

we have
#{p | p ≡ a (mod q)} =∞.

Main Theorem 1 (Telhcirid’s theorem on A.P. by Bhowmik–S. (2024+))

For any base g ≥ 31699 and a, q ∈ N satisfying

(∗) (a, q, g2 − 1) = 1 and g ∤ (a, q),

we have
#{p | ←−p ≡ a (mod q)} =∞.

We use decimal (base-10) representation in everyday life because we have 10 fingers in our
hands. If we had ≥ 31699 fingers in our hands...

; Senju-Kannon (千手観音): A goddess of mercy in Bhuddhism having 1000 hands!

10 / 28



Dirichlet’s theorem on A.P. and Telhcirid’s theorem on A.P.

Theorem 4 (Dirichlet’s theorem on A.P. (1837))

For any a, q ∈ N satisfying
(a, q) = 1,

we have
#{p | p ≡ a (mod q)} =∞.

Main Theorem 1 (Telhcirid’s theorem on A.P. by Bhowmik–S. (2024+))

For any base g ≥ 31699 and a, q ∈ N satisfying

(∗) (a, q, g2 − 1) = 1 and g ∤ (a, q),

we have
#{p | ←−p ≡ a (mod q)} =∞.

We use decimal (base-10) representation in everyday life because we have 10 fingers in our
hands. If we had ≥ 31699 fingers in our hands...

; Senju-Kannon (千手観音): A goddess of mercy in Bhuddhism having 1000 hands!

10 / 28



Oh... is it a scam?

But the statue of Senju-Kannon in Sanjusangendo (in Kyoto) has only 42 hands so

42× 5 = 210

fingers...
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Ah! That’s enough!

Still, there are 1001 Senju-Kannon statues in Sanjusangendo so

42× 5× 1001 = 210210 > 31699

fingers! So let’s use base-210210 representation with the aid of Senju-KannonS.
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Conditions in Telhcirid’s theorem on A.P.

Main Theorem 1 (Telhcirid’s theorem on A.P. by Bhowmik–S. (2024+))

For any base g ≥ 31699 and a, q ∈ N satisfying

(∗) (a, q, g2 − 1) = 1 and g ∤ (a, q),

we have
#{p | ←−p ≡ a (mod q)} =∞.

Why do we need the conditions (∗)?
By definition, ←−p ’s lowest digit is ̸= 0. Thus,

←−p ̸≡ 0 (mod g) and ←−p ≡ a (mod q) ; g ∤ (a, q).

By using g−1 ≡ g (mod g2 − 1), we get

p =
∑

0≤i<N

nig
i ≡ g−(N−1)

∑
0≤i<N

nig
N−i−1 = g−(N−1)←−p (mod g2 − 1)

and so

←−p ≡ a (mod q) ; p ≡ g−(N−1)a (mod (q, g2 − 1)) ; (a, q, g2 − 1) = 1.
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Siegel–Walfisz theorem

Let
π(x) := #{p ≤ x} and π(x ; a, q) := #{p ≤ x | p ≡ a (mod q)}.

Also, let φ be the Euler totient function.

Theorem 5 (Siegel–Walfisz theorem (1936))

For any a, q ∈ N with (a, q) = 1 and x ,A ≥ 1, we have

π(x ; a, q) =
1

φ(q)
π(x) + OA(π(x)(log x)

−A).

Note that this result is meaningful only for q ≤ (log x)A (roughly).

14 / 28



Zsiflaw–Legeis theorem

Let

GN := {n ∈ [gN−1, gN) | n ̸≡ 0 (mod g)},
←−πN(a, q) := #{p ∈ GN | ←−p ≡ a (mod q)}.

We then have the following quantitative result:

Main Theorem 2 (Zsiflaw–Legeis theorem by Bhowmik–S. (2024+))

For any base g ≥ 31699 and a, q ∈ N satisfying

(∗) (a, q, g2 − 1) = 1 and g ∤ (a, q),

we have

←−πN(a, q) =
ρg (a, q)

q

gN

log(gN)

(
1 + O

(
1

N

))
+ Og (g

N exp(−c
√
N)),

where c = c(g) > 0 is some constant and

ρg (a, q) :=

(
1− 1(q,g)|a

(q, g)

g

)
(q, g2 − 1)

φ((q, g2 − 1))
.

Note that this result is meaningful only for q ≤ exp(c
√
N) (roughly).
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Comparison: Siegel–Walfisz vs. Zsiflaw–Legeis

Siegel–Walfisz Zsiflaw–Legeis

Length L of the range x ↭ gN

log L log x ↭ N

Admissible level of S–W (log x)A ↭ NA

Admissible level of Z–L exp(c
√
log x) ↭ exp(c

√
N)

Zsiflaw–Legeis has a wider range of modulus than Siegel–Walfisz!

The implication is (probably)

“primality and digital property are rather uncorrelated” ...?
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3. Proof of theorem: Setting up discrete circle method
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Expansion by the additive characters (mod q)

Write e(x) := exp(2πix). By the orthogonality of additive characters (mod q), i.e.

1n≡a (mod q) =
1

q

∑
k (mod q)

e

(
k

q
(n − a)

)
,

we get

←−πN(a, q) :=
∑

p∈GN←−p ≡a (mod q)

1 =
1

q

∑
k (mod q)

e

(
−
k

q
a

) ∑
p∈GN

e

(
k

q
←−p

)
.

By rewriting the fractions k
q
to the reduced fractions

k

q
;

c

s
with (c, s) = 1,

we get

←−πN(a, q) =
1

q

∑
s|q

∑∗

c (mod s)

e

(
−
c

s
a

) ∑
p∈GN

e

(
c

s
←−p

)
,

where ∑∗

c (mod s)

:=
∑

c (mod q)
(c,q)=1

.
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Extract the main term

We make two observations:

As we saw in the necessary conditions (∗) of Telhcirid’s theorem, we know

←−p ≡ a (mod g2 − 1) ⇐⇒ p ≡ g−(N−1)a (mod g2 − 1).

so the (mod g2 − 1) condition on ←−p is reduced to the (mod g2 − 1) condition on p.

Take the least M with (q, gN) | gM . Since

n = (nN−1 · · · n0)(g) =⇒ ←−n = (n0 · · · nN−1)(g) ≡ (nN−M · · · nN−1)(g) (mod gM),

we have

←−n ≡ (aM−1 · · · a0)(g) (mod gM)

⇐⇒ n ∈ (a0 · · · aM−1)(g)g
N−M + [0, gN−M−1)

so the (mod gM) condition on ←−p is reduced to the “short interval” condition on p.

Expecting the other conditions behave randomly, we decompose the sum as

←−πN(a, q) =
1

q

∑
s|q

∑∗

c (mod s)

e

(
−
c

s
a

) ∑
p∈GN

e

(
c

s
←−p

)

=
1

q

∑
s|(q,(g2−1)gN )

+
1

q

∑
s|q

s∤(g2−1)gN

=: M + E , say.
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Calculation of the main term

The main term can be calculated backwards as

M =
1

q

∑
s|(q,(g2−1)gN )

∑∗

c (mod s)

e

(
−
c

s
a

) ∑
p∈GN

e

(
c

s
←−p

)

=
1

q

∑
k (mod (q,(g2−1)gN ))

e

(
−

k

(q, (g2 − 1)gN)
a

) ∑
p∈GN

e

(
k

(q, (g2 − 1)gN)
←−p

)

=
(q, (g2 − 1)gN)

q

∑
p∈GN

←−p ≡a (mod (q,(g2−1)gN ))

1.

The last sum can be calculated by using

Prime number theorem in A.P. of (mod g2 − 1).

In order to deal with the (mod (q, gN)) condition, PNT in A.P. over short intervals

x + [0, gN−M) with some x ∈ [0, gN) ((a, gN) | gM)

seems neccessary. However, (q, gN) is now small enough to use just

π(x ; a, q) =
1

φ(q)
π(x) + Oq(x exp(−cq

√
log x)) with q = g2 − 1≪g 1.
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Circle method for the remainder term

We just bound the remainder term pointwise as

E =
1

q

∑
s|q

s∤(g2−1)gN

∑∗

c (mod s)

e

(
−
c

s
a

) ∑
p∈GN

e

(
c

s
←−p

)

≪ max
s|q

s∤(g2−1)gN

(c,s)=1

∣∣∣∣ ∑
p∈GN

e

(
c

s
←−p

)∣∣∣∣.
Thus, our task is to bound the sum

R :=
∑

p∈GN

e

(
c

s
←−p

)
.

By the orthogonality on T, we have

R =

∫ 1

0

( ∑
p∈GN

e(−αp)
)( ∑

n∈GN

e

(
αn +

c

s
←−n

))
dα =

∫ 1

0
SP(−α)F (α, c

s
)dα

with the exponential sums

SP(α) :=
∑

p∈GN

e(αp) and F (α, β) :=
∑

n∈GN

e(αn + β←−n ).
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The Farey dissection

We employ the diophantine approximation

α =
b

r
+ η with (b, r) = 1 and |η| ≤ r−2

and define the major and minor arcs

M := {α ∈ [0, 1) | r , |η| : small} and m := [0, 1) \M.

We then decompose the integral as

R =

∫ 1

0
SP(−α)F (α, c

s
)dα =

∫
M

+

∫
m

=: RM + Rm.

We bound RM, Rm in two different manners.
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4. Treatment of the major arc
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On the major arc, we estimate the exponential sum over primes trivially

SP(α) =
∑

p∈GN

e(αp)≪ gN

while we use the fact that the major arc is very small

µ(M)≪ g−N exp(c
√
N) (µ : Lebesgue measure).

This gives

RM =

∫
M

SP(−α)F (α, c
s
)dα≪ µ(M)gN max

α∈[0,1)
|F (α, c

s
)|

≪ exp(c
√
N) max

α∈[0,1)
|F (α, c

s
)|.

We then prepare the non-trivial L∞-bound (pointwise bound) of

F (α, c
s
) =

∑
n∈GN

e(αn + c
s
←−n ) =

∑
n∈GN

e(α←−n + c
s
n)

by using the cancellation caused by the c
s
side.
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Product formula

Consider “the exponential sum over digits”, i.e.

ϕ(α) :=
∑

0≤n<g

e(αn).

For n represented as

n =
∑

0≤i<N

nig
i ; ←−n =

∑
0≤i<N

nig
N−i−1,

we have
α←−n + βn =

∑
0≤i<N

(αgN−i−1 + βg i )ni .

Accordingly, we (essentially) have a factorization

F (α, β) ≈
∑

0≤n0,...,nN−1<g

e

( ∑
0≤i<N

(αgN−i−1 + βg i )ni

)
=

N−1∏
i=0

ϕ(αgN−i−1 + βg i ).

This “product formula” is the key of the estimate for both of RM and Rm.
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Using the product formula to the L∞-bound of F (α, β)

Note that the consecutive argument of the product formula satisfies

βg i (g2 − 1) = (−1) · (αgN−i−1 + βg i ) + g · (αgN−(i+1)−1 + βg i+1)

and so the triangle inequality of ∥α∥ := minn∈Z |α− n| implies

∥βg i (g2 − 1)∥ ≤ 1 · ∥αgN−i−1 + βg i∥+ g · ∥αgN−(i+1)−1 + βg i+1∥

; max(∥αgN−i−1 + βg i∥, ∥αgN−(i+1)−1 + βg i+1∥) ≥
1

g + 1
∥βg i (g2 − 1)∥.

For small |α|, we have approximations (the values of cg may change)

|ϕ(α)| =
∣∣∣∣ sinπg∥α∥sinπ∥α∥

∣∣∣∣ = ∣∣∣∣πg∥α∥ − 1
6
(πg∥α∥)3 + · · ·

π∥α∥ − 1
6
(π∥α∥)3 + · · ·

∣∣∣∣ ≈ g(1− cg∥α∥2) ≈ g exp
(
−cg∥α∥2

)
and so, by pairing the consecutive indices, the product formula essentially gives

F (α, c
s
) =

N−1∏
i=0

ϕ(αgN−i−1 + c
s
g i )≪ gN exp

(
−cg

∑
0≤i<N

∥∥∥∥ (g2 − 1)g ic

s

∥∥∥∥2).

We thus need some observation on (g2−1)g i c
s

(mod 1).

26 / 28



A bit about the distribution of (g2−1)g i c
s (mod 1)

Suppose that we have a sad news at the i0-th step: “∥ (g
2−1)g i0 c

s
∥ is small” as∥∥∥∥ (g2 − 1)g i0c

s

∥∥∥∥ ≤ 1

2g

It is also a good news: “we can controll the next value” as

g ·
∥∥∥∥ (g2 − 1)g i0c

s

∥∥∥∥ ≤ 1

2
;

∥∥∥∥ (g2 − 1)g i0+1c

s

∥∥∥∥ = g ·
∥∥∥∥ (g2 − 1)g i0c

s

∥∥∥∥.
How long can this continues? Assume that this process continues L times so that∥∥∥∥ (g2 − 1)g i0+Lc

s

∥∥∥∥ = gL ·
∥∥∥∥ (g2 − 1)g i0c

s

∥∥∥∥
and recall that s ∤ (g2 − 1)gN and (c, s) = 1. We then have

gL

s
≤ gL ·

∥∥∥∥ (g2 − 1)g i0c

s

∥∥∥∥ =

∥∥∥∥ (g2 − 1)g i0+Lc

s

∥∥∥∥ ≤ 1

2
; L≪ log s.

Thus, once per log s steps of i , we have ∥ (g
2−1)g i c

s
∥ ≥ 1

2g
.
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The L∞-bound of F (α, β)

By combining the estimate given by the product formula

F (α, c
s
)≪ gN exp

(
−cg

∑
0≤i<N

∥∥∥∥ (g2 − 1)g ic

s

∥∥∥∥2)

and our small knowledge on the distribution of (g2−1)g i c
s

(mod 1):

once per log s steps of i , we have

∥∥∥∥ (g2 − 1)g ic

s

∥∥∥∥ ≥ 1

2g
,

we get the bound

F (α, c
s
)≪ gN exp

(
−cg

N

log s

)
≪ gN exp

(
−cg

N

log q

)
.

This gives a non-trivial L∞-bound of F (α, β).
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5. Treatment of the minor arc
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Circle method for binary additive problem?

A general expectation on the size of exponential sum is the “square-root” cancellation

|(exponential sum)| ≍ (trivial bound)
1
2

which follows by some probabilistic argument with Parseval’s formula.

By recalling the measure of M is very small, we should have∫
m
|SP(−α)||F (α, c

s
)|dα≫ µ(m) · g

N
2 · g

N
2 ≫ gN ≫ (main term).

This implies our circle method seems fail...?

We can indeed use the product formula (shown in the next slide)

F (α, β) =

N−1∏
i=0

ϕ(αgN−i−1 + βg i )

for overcoming this difficulty. We shall show the L1-bound∫ 1

0
|F (α, β)|dα≪ (Ag log g)N (Ag > 0 : constant),

which shows a bound stronger than the square-root cancellation on average over α.
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The L1-bound of F (α, β)

Recall a bound based on the summation formula for geometric series

|ϕ(α)| =
∣∣∣∣ ∑
0≤n<g

e(αn)

∣∣∣∣ ≤ min

(
g ,

1

∥α∥

)
where ∥α∥ = min

n∈Z
∥α∥.

By using this bound in the product formula, we get

|F (α, β)| =
N−1∏
i=0

|ϕ(αgN−i−1 + βg i )| ≤
N−1∏
i=0

min

(
g ,

1

∥αgN−i−1 + βg i∥

)
.

By approximating the integral by the Riemann sum with mesh of width g−N , we get∫ 1

0
|F (α, β)|dα≪

1

gN

∑
0≤h<gN

|F (hg−N , β)|.

By using the above bound based on the product formula, we get

∫ 1

0
|F (α, β)|dα≪

1

gN

∑
0≤h<gN

N−1∏
i=0

min

(
g ,

1

∥hg−(i+1) + βg i∥

)
.
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What we obtained so far:∫ 1

0
|F (α, β)|dα≪

1

gN

∑
0≤h<gN

N−1∏
i=0

min

(
g ,

1

∥hg−(i+1) + βg i∥

)
.

We now express h by the base-g representation as

h =
∑

0≤j<N

hjg
j with h0, . . . , hN−1 ∈ {0, . . . , g − 1},

where hN−1 is now not necessarily non-zero. We then have

hg−(i+1) =
∑

0≤j<N

hjg
j−(i+1) ≡ hig

−1 + δ(h0, . . . , hi−1)︸ ︷︷ ︸
lower order terms

(mod 1).

Thus, essentially (ignoring βg i and δ(h0, . . . , hi−1)), we have∫ 1

0
|F (α, β)|dα≪

1

gN

∑
0≤h0,...,hN−1<g

N−1∏
i=0

min

(
g ,

1

∥hig−1∥

)

=

(
1

g

∑
0≤n<g

min

(
g ,

1

∥hg−1∥

))N

≪ (Ag log g)N .

Note: We may ignore βg i and δ(h0, . . . , hi−1) (to some extent) by

Taking the summation in the order
∑

h0
· · ·

∑
hN−1

.

Remove the effect of βg i and δ(h0, . . . , hi−1) by shifting the summation variable.
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