Irrationality of power series with average sparsity

Yuta Suzuki (Rikkyo University) joint work with Hajime Kaneko (University of Tsukuba) Yohei Tachiya (Hirosaki University)

> November 22nd, 2024 Mini Workshop @ TUS

1. Erdős' Irrationality Monsters

	Chrospiela A	CHESCUP CHESCUP CHESCUP	SARAGED .	*	These tag	Anagoria.	Contract Section	Sectors.		Crosperial		Bragest	Brockeria Alexandre	Canadianty	Brouger		Anapara ana ana ana ana ana ana ana ana ana
Sector Sector	Parstant And And And And And And And And And And	CHISRON C				(BASSESS)	Children Shirther Shirther	NUT IN COMM	CHRACKET CHRACKET CHRACKET	Sectors .	restar	Sector Sector			A loss	Parton S	Restant Sustain
	3	Bragenti December	Breesen	Philipping	Bregeria Bregeria						Chelotente Chelotente Kan hanne			Sector	Passing Contraction Contraction		
	GAISADEN CAUSADEN	Brogers.	Services Services	eestaa ***	and an	SPEAKER.	Chingen a	yestow Sector		Ŕ		and the second s	Brageria.		seter A	notes	Nation
SHERE STATE	Children A	The states	Sectory A		Angel Lange	Biston	Sectory	Brageria	Sector V	Bridget	ARREAD A			Bringen A	Pastag M	Sectory	Andrew Contraction
		Sectors Sectors	Product.	Sector A		teatran		Sheeper a	spastory	M	PASSAGE Contraction Contraction	Bridger Second		Baddar See	Caragonia Caragonia Caragonia		
	Sectory Sectory	Briggini Briggini	Botton	Sector Sector	Anagent.	Sector R		Sectory	Baqati		Sector Sector	BESSON BESSON	Sector.	Bistor	Suday	Sector Sector	Bagal
	Britishered.	Badat	Sectory	Sastan	Bragenta Martine	SPERIOR.	ATSUTO.	- Al		Bastan				Protors.	Sectory	Tession M	Bittan Bittan
			The state	Galacteria Sectors	PERSONAL AND		Marken a		anger a	Sanstano Maria	SPERIOD.	Batton C	Sector L	RESEARCY AND AND AND AND AND AND AND AND AND AND	Suctory		

Irrationality Monsters

In this talk, we let $q \in \mathbb{Z}_{\geq 2}$. The series

$$\begin{split} \sum_{n=1}^{\infty} \frac{\tau(n)}{q^n}, & \sum_{n=1}^{\infty} \frac{r(n)}{q^n}, & \sum_{n=1}^{\infty} \frac{\sigma(n)}{q^n}, \\ & \sum_{n=1}^{\infty} \frac{1}{q^{\varphi(n)}}, & \sum_{n=1}^{\infty} \frac{1}{q^{\sigma(n)}}, \\ & \sum_{n=1}^{\infty} \frac{\sigma(n)}{n!}, & \sum_{n=1}^{\infty} \frac{\sigma_2(n)}{n!}, & \sum_{n=1}^{\infty} \frac{p_n}{n!} \end{split}$$

are known to be irrational (due to Chowla, Erdős, Duverney, etc.), where

• $\tau(n)$: number of divisors of n.

•
$$r(n) \coloneqq \#\{(u,v) \in \mathbb{Z}^2 \mid n = u^2 + v^2\}$$

• $\varphi(n)$: Euler totient function defined by

$$\varphi(n) := n \prod_{p|n} \left(1 - \frac{1}{p}\right).$$

• $\sigma_k(n)$: sum of the k-th power of divisors of n, i.e.

$$\sigma_k(n)\coloneqq \sum_{d\mid n} d^k$$
 and write $\sigma(n)\coloneqq \sigma_1(n).$

\square p_n : the *n*-th smallest prime number.

A website called "Pokemon fusion" (seems unofficial)

https://pokemon.alexonsager.net/

which provides a service to "mix" two pokemons to get a chimera, e.g.

A website called "Pokemon fusion" (seems unofficial)

https://pokemon.alexonsager.net/

which provides a service to "mix" two pokemons to get a chimera, e.g.

A website called "Pokemon fusion" (seems unofficial)

https://pokemon.alexonsager.net/

which provides a service to "mix" two pokemons to get a chimera, e.g.

Chimera of two Erdős' series

We now look at two series of Erdős

$$\sum_{n=1}^{\infty}rac{ au(n)}{q^n} \quad ext{and} \quad \sum_{n=1}^{\infty}rac{1}{q^{arphi(n)}}.$$

We shall mix these two series! Namely, we consider

$$\sum_{n=1}^{\infty} \frac{\tau(n)}{q^{\varphi(n)}}$$

One example of the consequence of our irrationality criterion is:

Theorem 1 (Kaneko–Tachiya–S. (2024+))	
$\sum_{n=1}^{\infty}rac{ au(n)}{q^{arphi(n)}} ot\in\mathbb{Q}.$	

Disclaimer

However, our method is purely an extension of the method for

$$\sum_{n=1}^{\infty} \frac{1}{q^{\varphi(n)}}.$$

2. Basic irrationality of sparse base-q expansion

Rewriting to power series & base-q expansion

Erdős' series:

$$\xi_arphi \coloneqq \sum_{m=1}^\infty rac{1}{q^{arphi(m)}}.$$

By collecting the terms with the same value of $\varphi(m)$, we get

$$\xi_arphi = \sum_{n=1}^\infty rac{A_arphi(n)}{q^n} \quad ext{with} \quad A_arphi(n) \coloneqq \sum_{arphi(m)=n} 1.$$

Thus, our problem is reduced the irrationality of power series

$$\xi := \sum_{n=1}^{\infty} \frac{a(n)}{q^n}$$

As the simplest case, we consider the base-q expansion

$$\xi\coloneqq \sum_{n=1}^\infty rac{a(n)}{q^n} \quad ext{and} \quad a(n)\in\{0,1,\ldots,q-1\}.$$

What is special here is the size restriction of a_n .

Basic principle: Long gap in the support implies irrationality

Notation 1

For an arithmetic function a(n), we define the **support** of a(n) by

$$\operatorname{Supp}_a := \{n \in \mathbb{N} \mid a(n) \neq 0\}.$$

• For an infinite set $\mathscr{A} \subset \mathbb{N}$ (clear from the context) and $n \in \mathscr{A}$, let

 $n_+ := \min\{m \in \mathscr{A} \mid m > n\} = (\text{the element of } \mathscr{A} \text{ subsequent to } n).$

Proposition 1 (Long gap in the support implies irrationality)

For any infinitely long base-q expansion

$$\xi = \sum_{n=1}^{\infty} \frac{a(n)}{q^n}$$
 with $\# \operatorname{Supp}_a = \infty$

and arbitrary long gaps in the support, i.e.

$$\sup_{n\in \mathrm{Supp}_a}(n_+-n)=\infty,$$

we have $\xi \notin \mathbb{Q}$.

First averaging technique: Finding long gap on average

In general, it is not easy to locate the exact position of long gap.

We can use the following average argument instead:

Lemma 1 (Finding long gap on average)

For any arithemtic function a(n) with $Supp_a$, we have

$$\# \operatorname{Supp}_{a}(x) = o(x) \quad (x \to \infty) \implies \sup_{n \in \operatorname{Supp}_{a}} (n_{+} - n) = \infty.$$

Proof.

Take $N \in \text{Supp}_a$ arbitrarily. Then, we have

$$N - \min \operatorname{Supp}_a = \sum_{n \in \operatorname{Supp}_a(N)} (n_+ - n) \le \# \operatorname{Supp}_a(N) \times \sup_{n \in \operatorname{Supp}_a(N)} (n_+ - n)$$

and so, by using $\#\operatorname{Supp}_a(x) = o(x)$ $(x \to \infty)$, we get

$$\sup_{n \in \operatorname{Supp}_a(N)} (n_+ - n) \geq \frac{N}{\#\operatorname{Supp}_a(N)} + o(1) \to \infty \quad (N \to \infty)$$

as desired.

Finding long gap for Erdős' series

Recall our chimera:

$$\xi_{\varphi} = \sum_{m=1}^{\infty} \frac{1}{q^{\varphi(m)}} = \sum_{n=1}^{\infty} \frac{A_{\varphi}(n)}{q^n} \quad \text{with} \quad A_{\varphi}(n) := \sum_{\varphi(m)=n} 1.$$

In order to find long gaps, we need to have

$$\#\operatorname{Supp}_{A_{\varphi}}(x) = o(x) \quad (x \to \infty).$$

To this end, we can use the following:

Lemma 2 (Erdős (1935), Ford (1998))

For the counting function

$$V_{\varphi} \coloneqq \{n \in \mathbb{N} \mid \varphi(m) = n \text{ for some } m\} = \operatorname{Supp}_{A_{\varphi}}$$

(note that $\tau(m) > 0$ for any m), we have

$$\#V_{\varphi}(x) = \#\operatorname{Supp}_{A_{\varphi}}(x) = \frac{x}{\log x} \exp\Big(O\big((\log\log\log x)^2\big)\Big).$$

3. Erdős' criterion for the irrationality of sparse power series

An issue for the current argument

Indeed, our argument has a flaw: Our method relies on the base-q expansion

$$\xi = \sum_{n=1}^{\infty} \frac{a(n)}{q^n} \quad \text{with} \quad \boxed{a(n) \in \{0, 1, \dots, q-1\}}$$

while our power series

$$\xi_{\varphi} = \sum_{m=1}^{\infty} \frac{1}{q^{\varphi(m)}} = \sum_{n=1}^{\infty} \frac{A_{\varphi}(n)}{q^n} \quad \text{with} \quad A_{\varphi}(n) \coloneqq \sum_{\varphi(m)=n} 1$$

indeed have unbounded coefficient!

Proposition 2 (Erdős (1935), Pomerance (1980))

For infinitely many n, we have

 $A_{\varphi}(n) > n^{\theta}$ with $\theta > 0.55655.$

We again overcome this difficulty with an average argument.

We can indeed replace the size restriction

$$a(n) \in \{0, 1, \ldots, q-1\}$$

by an average boundedness:

Theorem 2 (Erdős' simple criterion (1954))

Consider an infinite power series

$$\xi = \sum_{n=1}^{\infty} \frac{a(n)}{q^n}$$
 with $a(n) \in \mathbb{Z}_{\geq 0}$ and $\# \operatorname{Supp}_a = \infty$.

Assume

• (Average Bound) "The coefficient is bounded on average" in the sense that

$$S_a(x) \coloneqq \sum_{n < x} a(n) \ll x.$$

■ (Average Gap) "We have arbitrary long gaps on average" in the sense that

$$\# \operatorname{Supp}_a(x) = o(x) \quad (x \to \infty).$$

We then have $\xi \notin \mathbb{Q}$.

Average bound for Erdős' series

For Erdős' series

$$\xi_{\varphi} = \sum_{m=1}^{\infty} \frac{1}{q^{\varphi(m)}} = \sum_{n=1}^{\infty} \frac{A_{\varphi}(n)}{q^n} \quad \text{with} \quad A_{\varphi}(n) := \sum_{\varphi(m)=n} 1,$$

we have average boundedness of coefficient

$$\sum_{n \le x} A_{\varphi}(n) = \sum_{\varphi(m) \le x} 1 \ll x$$

by the following known result:

Lemma 3 (Erdős (1945), Bateman (1972))

For some constant c > 0, we have

$$\sum_{n\leq x} A_{\varphi}(n) = \sum_{\varphi(m)\leq x} 1 = \frac{\zeta(2)\zeta(3)}{\zeta(6)} x + O(x \exp(-c(\log x \log \log x)^{\frac{1}{2}})).$$

How about the chimera series?

We now consider the "chimera" series:

$$\xi_{arphi}^{ au}\coloneqq\sum_{m=1}^{\infty}rac{ au(n)}{q^{arphi(m)}}.$$

By collecting the terms with the same value of $\varphi(m)$, we get

$$\xi_{\varphi}^{\tau} = \sum_{n=1}^{\infty} \frac{A_{\varphi}^{\tau}(n)}{q^n} \quad \text{with} \quad A_{\varphi}^{\tau}(n) \coloneqq \sum_{\varphi(m)=n} \tau(m).$$

Can we apply Erdős' simple criterion?

■ For the Average Gap condition, we can still use Ford's result

$$\#\operatorname{Supp}_{A_{\varphi}^{\tau}}(x) = \#V_{\varphi}(x) = \frac{x}{\log x} \exp\left(O\left((\log\log\log x)^2\right)\right).$$

However, for the Average Bound condition, we can prove

$$\sum_{n < x} A_{\varphi}^{\tau}(n) = \sum_{\varphi(m) < x} \tau(m) \sim Cx \log x \quad (x \to \infty)$$

for some constant C > 0. Thus, the Average Bound condition does NOT hold!

4. A refined Erdős criterion

What does Erdős' criterion mean?: Average picture & A refinement idea

What does Erdős' criterion mean?: Average picture & A refinement idea

Theorem 3 (Kaneko–Tachiya–S. (2024+))

Consider an infinite power series

$$\xi = \sum_{n=1}^\infty \frac{\mathsf{a}(n)}{q^n} \quad \text{with} \quad \mathsf{a}(n) \in \mathbb{Z}_{\geq 0} \text{ and } \# \operatorname{Supp}_{\mathsf{a}} = \infty.$$

Assume that there is $H \colon \mathbb{N} \to \mathbb{R}_{\geq 1}$ such that

• (Average Bound) The coefficient is bounded by $o(t^{H(x)})$ on average, i.e.

$$S_a(x) \coloneqq \sum_{n < x} a(n) = o(q^{H(x)}x).$$

• (Average Gap) We have gaps of size H(x) on average, i.e.

$$\# \operatorname{Supp}_{a}(x) = o(x/H(x)) \quad (x \to \infty).$$

■ (Strong Convergence) Our power series is strictly inside the disk of convergence, i.e.

$$\limsup_{n \to \infty} a(n)^{\frac{1}{n}} < q.$$

We then have $\xi \notin \mathbb{Q}$. (Remark: We need assumptions only for arbitrary large x.)

Average bound for the chimera series

Our refined criterion:

$$S_a(x) := \sum_{n < x} a(n) \ll q^{H(x)}x$$
 and $\# \operatorname{Supp}_a(x) = o\left(\frac{x}{H(x)}\right).$

The chimera series:

$$\xi_{\varphi}^{\tau} = \sum_{n=1}^{\infty} \frac{A_{\varphi}^{\tau}(n)}{q^n} \quad \text{with} \quad A_{\varphi}^{\tau}(n) \coloneqq \sum_{\varphi(m)=n} \tau(m)$$

Since

$$\varphi(m) \ge \frac{m}{\log m}$$
 (*m* : large)

we have

$$\sum_{n < x} A_{\varphi}^{\tau}(n) = \sum_{\varphi(m) < x} \tau(m) \leq \sum_{m < x \log x} \tau(m) \ll x (\log x)^2 \leq q^{\frac{2}{\log q} \log \log x} x = o(q^{H(x)}x)$$

with $H(x) \coloneqq \frac{3}{\log q} \log \log x$. Also, Ford's result gives (note that $\tau(n) > 0$ for any n)

$$\#\operatorname{Supp}_{A_{\varphi}^{\tau}}(x) = \#\operatorname{Supp}_{A_{\varphi}}(x) = \frac{x}{\log x} \exp\left(O\left((\log\log\log x)^2\right)\right) = o(x/H(x)).$$

Strong convergence is easy to check. This completes the proof of the irrationality of ξ_{φ}^{τ} .

5. Proof of the refined criterion

Basic principle

Write

$$\xi = \sum_{n=1}^{\infty} \frac{a(n)}{q^n} = \xi_N + q^{-N} X_N \quad \rightsquigarrow \quad q^N \xi - q^N \xi_N = X_N$$

with

$$\xi_N = \xi_N(a) \coloneqq \sum_{n < N} \frac{a(n)}{q^n}$$
 and $X_N = X_N(a) \coloneqq \sum_{h \ge 0} \frac{a(N+h)}{q^h}$.

Lemma 4 (Small tail implies irrationality)

$$\inf_N X_N = 0 \text{ and } \# \operatorname{Supp}_a = \infty \quad \Longrightarrow \quad \xi \notin \mathbb{Q}.$$

Proof.

Assume to the contrary that $\xi = \frac{a}{d}$. Then

$$0 < dX_N = dq^N \xi - dq^N \xi_N = q^N a - d \sum_{n < N} a(n) q^{N-n} \in \mathbb{Z}$$

which implies

$$\inf_N X_N \geq \frac{1}{d}$$

which contradicts the assumption on the infimum.

Our goal:

$$\inf_N X_N = 0 \quad ext{where} \quad X_N = \sum_{h \geq 0} rac{a(N+h)}{q^h}.$$

We want to make the tail X_N small by making a gap

$$a(N+0) = a(N+1) = \cdots = a(N+H-1) = 0$$

of length H in the way

$$X_N = \sum_{h\geq 0} rac{a(N+h)}{q^h} = \sum_{h\geq H} rac{a(N+h)}{q^h}.$$

Again, it is difficult to locate where X_N is small. Thus, we consider an average

$$R(x,H) := \sum_{N < x} \sum_{h \ge H} \frac{a(N+h)}{q^h}$$

of the "*H*-shifted" tails.

Our goal:

$$\inf_N X_N = 0$$
 where $X_N = \sum_{h \ge 0} rac{a(N+h)}{q^h}.$

We introduce the counting function for large tails

$$T(x,\varepsilon) \coloneqq \{N < x \mid X_N \ge \varepsilon\}.$$

Thus, out aim is to bound this quantity non-trivially as

$$\#T(x,\varepsilon) = o(x) \quad (x \to \infty)$$

to show there are plenty of small tails.

Lemma 5 (Small tail lemma)

For any $\eta \in (0, 1)$ (a technical parameter), we have the following. Assume (Average Gap) We have gaps of size H(x) on average, i.e.

$$\# \operatorname{Supp}_{a}(x) = o(x/H(x)) \quad (x \to \infty).$$

• (Average Small Tail) The H(x)-shifted tail is small on average, i.e.

$$R(\eta x, H(x)) = \sum_{N < \eta x} \sum_{h \ge H(x)} \frac{a(N+h)}{q^h} = o(x) \quad (x \to \infty).$$

(This is not assumed in our criterion and so should be proved later.) For a fixed $\varepsilon>0,$ we then have

$$\#T(\eta x,\varepsilon) = \#\{N < \eta x \mid X_N \ge \varepsilon\} = o(x) \quad (x \to \infty).$$

We decompose as

$$T(\eta x, \varepsilon) = \{ N < \eta x \mid X_N \ge \varepsilon \}$$

= $\{ N < \eta x \mid X_N \ge \varepsilon \text{ and } \forall h \in [0, H(x)), a(N+h) = 0 \}$
 $\cup \{ N < \eta x \mid X_N \ge \varepsilon \text{ and } \exists h \in [0, H(x)), a(N+h) \neq 0 \}$
= $\{ N < \eta x \mid X_N \ge \varepsilon \text{ and } \forall h \in [0, H(x)), a(N+h) = 0 \}$
 $\cup \{ N < \eta x \mid \exists h \in [0, H(x)), a(N+h) \neq 0 \}$
=: $T_{\mathsf{Gap}}(\eta x, \varepsilon) \cup T_{\mathsf{No } \mathsf{Gap}}(\eta x, \varepsilon),$

where

$$T_{\mathsf{Gap}}(\eta x, \varepsilon) \coloneqq \{ N < \eta x \mid X_N \ge \varepsilon \text{ and } \forall h \in [0, H(x)), \ a(N+h) = 0 \},\$$

$$T_{\mathsf{No }\mathsf{Gap}}(\eta x, \varepsilon) \coloneqq \{ N < \eta x \mid \exists h \in [0, H(x)), \ a(N+h) \neq 0 \}.$$

We then have

$$\#T(\eta x,\varepsilon) \leq \#T_{\mathsf{Gap}}(\eta x,\varepsilon) + \#T_{\mathsf{No}\;\mathsf{Gap}}(\eta x,\varepsilon).$$

We bound $\#T_{Gap}(\eta x, \varepsilon)$ and $\#T_{No Gap}(\eta x, \varepsilon)$ separately.

Small tail after a gap

For the gap part

$$\mathcal{T}_{\mathsf{Gap}}(\eta x,\varepsilon) = \{ N < \eta x \mid X_N \geq \varepsilon \text{ and } \forall h \in [0,H(x)), \ a(N+h) = 0 \},$$

by the Average Small Tail Condition, i.e.

$$R(\eta x, H(x)) = \sum_{N < \eta x} \sum_{h \ge H(x)} \frac{a(N+h)}{q^h} = o(x) \quad (x \to \infty),$$

we have

$$\sum_{N \in T_{\text{Gap}}(\eta \times, \varepsilon)} X_N = \sum_{N \in T_{\text{Gap}}(\eta \times, \varepsilon)} \sum_{h \ge 0} \frac{a(N+h)}{q^h}$$
$$= \sum_{N \in T_{\text{Gap}}(\eta \times, \varepsilon)} \sum_{h \ge H(x)} \frac{a(N+h)}{q^h}$$
$$\leq \sum_{N < \eta \times} \sum_{h \ge H(x)} \frac{a(N+h)}{q^h} = R(\eta \times, H(x)) = o(x)$$

while

$$\sum_{N \in T_{\mathsf{Gap}}(\eta x, \varepsilon)} X_N \geq \varepsilon \cdot \# T_{\mathsf{Gap}}(\eta x, \varepsilon)$$

and so

$$\# T_{\mathsf{Gap}}(\eta x, \varepsilon) = o(x/\varepsilon) = o(x) \quad (x \to \infty).$$

For the no gap part

$$T_{\text{No Gap}}(\eta x, \varepsilon) = \{ N < \eta x \mid \exists h \in [0, H(x)), \ a(N+h) \neq 0 \},\$$

by Average Gap Condition, i.e.

$$\#\operatorname{Supp}_a(x) = o(x/H(x)) \quad (x \to \infty),$$

we have

$$\# T_{\text{No Gap}}(\eta x, \varepsilon) \leq \# T_{\text{No Gap}}(\eta x - H(x), \varepsilon) + H(x)$$

$$\leq \sum_{0 \leq h < H(x)} \# \{ N < \eta x - H(x) \mid a(N+h) \neq 0 \} + H(x)$$

$$\leq \sum_{0 \leq h < H(x)} \# \{ N < \eta x \mid a(N) \neq 0 \} + H(x)$$

$$= H(x) \# \operatorname{Supp}_{a}(\eta x) + H(x)$$

$$\leq 2H(x) \cdot \# \operatorname{Supp}_{a}(x)$$

$$= o(H(x) \cdot x/H(x)) = o(x).$$

This completes the proof of the small tail lemma.

Average small tail lemma

What we need to prove is the Average Small Tail condition, i.e.

$$R(\eta x, H(x)) = \sum_{N < \eta \times} \sum_{h \ge H(x)} \frac{a(N+h)}{q^h} = o(x) \quad (x \to \infty)$$

for some $\eta \in (0, 1)$, which is not assumed in our criterion.

Lemma 6 (Average small tail lemma)

Assume

• (Average Bound) The coefficient is bounded by $t^{H(x)}$ on average, i.e.

$$S_a(x) = \sum_{n < x} a(n) = o(q^{H(x)}x).$$

• (Strong Convergence) Our power series is strictly inside the disk of convergence, i.e.

$$\limsup_{n\to\infty} a(n)^{\frac{1}{n}} < q.$$

Then, there is $\eta \in (0,1)$ such that

$$R(\eta x, H(x)) = \sum_{N < \eta x} \sum_{h \ge H(x)} \frac{a(N+h)}{q^h} = o(x) \quad (x \to \infty).$$

We decompose the sum as

$$R(\eta x, H(x)) = \sum_{N < \eta x} \sum_{h \ge H(x)} \frac{a(N+h)}{q^h}$$
$$= \sum_{N < \eta x} \sum_{H(x) \le h < x-N} \frac{a(N+h)}{q^h} + \sum_{N < \eta x} \sum_{h \ge x-N} \frac{a(N+h)}{q^h}$$
$$=: R_{\text{close}}(\eta x, H(x)) + R_{\text{far}}(\eta x, H(x)).$$

We then estimate the last two sums separately.

For the "close" tail

$$R_{\text{close}}(\eta x, H(x)) = \sum_{N < \eta x} \sum_{H(x) \le h < x - N} \frac{a(N+h)}{q^h},$$

by the Average Bound condition, i.e.

$$S_a(x) = \sum_{n < x} a(n) = o(q^{H(x)}x),$$

we have

$$R_{\text{close}}(\eta x, H(x)) = \sum_{N < \eta x} \sum_{H(x) \le h < x-N} \frac{a(N+h)}{q^h}$$
$$\leq \sum_{h \ge H(x)} q^{-h} \sum_{N < x-h} a(N+H) \le 2q^{-H(x)} S_a(x) = o(x).$$

Bound for far tail

We next consider the "far" tail

$$R_{\mathsf{far}}(\eta x, H(x)) = \sum_{N < \eta x} \sum_{h \ge x - N} \frac{a(N+h)}{q^h}.$$

By the Strong Convergence condition, we can take $\eta \in (0,1)$ such that

$$\limsup_{n \to \infty} a(n)^{\frac{1}{n}} < q^{1-2\eta} < q \quad \rightsquigarrow \quad a(n) \ll q^{(1-2)n}$$

we have

$$egin{aligned} R_{\mathsf{far}}(x, \mathcal{H}(x)) &= \sum_{N < \eta imes} \sum_{h \geq x - N} rac{a(N+h)}{q^h} \ &\leq \sum_{N < \eta imes} q^N \sum_{h \geq x - N} rac{q^{(1-2\eta)(N+h)}}{q^{N+h}} \ &\ll_\eta q^{\eta imes} \cdot rac{q^{(1-2\eta)x}}{q^ imes} \ll q^{-\eta imes} = o(1). \end{aligned}$$

This completes the proof of average small tail lemma and so the refined Erdős criterion.

Linear independence result

A straightforward application of the refined criterion with

Lemma 7 (Erdős–Hall (1977), Luca–Pomerance (2009))

$$\#\{n < x \mid \varphi(\varphi(m)) = n \text{ for some } m\} = \frac{x}{(\log x)^2} \exp(O(\log \log x \log \log \log x)^{\frac{1}{2}}).$$

(here, the exponent 2 of the denominator $(\log x)^2$ is important) gives

Theorem 4 (Kaneko–Tachiya–S. (2024+))

The series

$$\sum_{n=1}^{\infty}rac{n^k}{q^{arphi(arphi(n))}}\quad (k\in\mathbb{Z}_{\geq 0}).$$

are linearly independent over \mathbb{Q} .

Conjecture 1

The series

$$\sum_{n=1}^{\infty}rac{n^k}{q^{arphi(n)}}\quad (k\in\mathbb{Z}_{\geq 0})$$

are linearly independent over \mathbb{Q} .

6. Extension to the higher degree irrationality

Theorem 5 (Erdős (1957))

Let $d \in \mathbb{N}$. For an increasing sequence of positive integers

$$m_1 < m_2 < m_3 < \cdots$$

satisfying

$$\limsup_{k\to\infty}\frac{m_k}{k^d}=\infty,$$

the series

$$\alpha \coloneqq \sum_{k=1}^{\infty} \frac{1}{q^{m_k}}$$

does not satisfy any non-trivial algebraic equation of degree $\leq d$ over \mathbb{Q} , i.e.

 $P \in \mathbb{Q}[X] \setminus \{0\} \text{ and } \deg P \leq d \implies P(\alpha) \neq 0.$

Expanding the algebraic relation

Write $\mathcal{M} := \{n_k \mid k \in \mathbb{N}\}$. Our series:

$$\alpha := \sum_{m \in \mathscr{M}} \frac{1}{q^m}.$$

Note that we have

$$\alpha^{s} = \left(\sum_{m \in \mathscr{M}} \frac{1}{q^{m}}\right)^{s} = \sum_{n=1}^{\infty} \frac{r_{s}(n)}{q^{n}},$$

where the coefficient is given by the representation function

$$r_s(n) \coloneqq \#\{(m_1,\ldots,m_s) \in \mathscr{M}^s \mid m_1 + \cdots + m_s = n\}.$$

For a given polynomial $P(X) = X^d + a_{d-1}X^{d-1} + \cdots + a_1X + a_0$, we expand the expression

$$P(\alpha) = \alpha^d + c_{d-1}\alpha^{d-1} + \dots + c_1\alpha + a_0$$

to get

$$P(\alpha) = \sum_{n=1}^{\infty} \frac{a(n) + b(n)}{q^n},$$

where the coefficients a(n), b(n) are given by

$$a(n) = r_d(n)$$
 and $b(n) = c_{d-1}r_{d-1}(n) + \cdots + c_1r_1(n) + c_0$

Remark

Knight (1991) gave a "direct" proof of the transcendence of the Fredholm series

$$\sum_{k=1}^{\infty} \frac{1}{q^{2^k}}.$$

- Bailey–Borwein–Crandall–Pomerance (2004) used the same idea to discuss the distribution of 1's in the binary expansion and the higher degree irrationality.
- Kaneko (2017) extended the method to the algebraic *independence*.
- We can extend our method to the higher degree independence by Kaneko's method.

Erdős' criterion with perturbation

Thus, what we need to consider is the irrationality of the series of the type

$$\xi \coloneqq \sum_{n=1}^\infty \frac{a(n)+b(n)}{q^n} \quad \text{with} \quad a(n) \in \mathbb{Z}_{\geq 0}, \ \# \operatorname{Supp}_a = \infty \ \text{and} \ b(n) \in \mathbb{Z},$$

where a "perturbation" b(n) is newly inserted into our original series.

Theorem 6 (Erdős (1957))

Assume that there exists $\Delta, L > 1$ satisfying

• (Average Bound) The coefficients are bounded on average, i.e.

$$S_a(x), S_{|b|}(x) \ll x.$$

■ (Average Gap) We have long gaps on average, i.e.

 $\# \operatorname{Supp}_{a}(x) = o(x) \text{ and } \# \operatorname{Supp}_{b}(x) = o(x/\log x).$

- (Strong Convergence) We have $\log a(n), \log |b(n)| \ll n$.
- (Interlace) For any consecutive $n, n_+ \in \text{Supp}_b$ and $\ell \geq L$ with $n + \Delta \ell < n_+$, we have

$$\operatorname{Supp}_{a} \cap [n + \ell, n + \Delta \ell) \neq \emptyset.$$

Then, we have $\xi \notin \mathbb{Q}$.

Theorem 7 (Erdős (1957) without proof)

Assume that there exists $\Delta, L>1$ satisfying

• (Average Bound) The coefficients are bounded on average, i.e.

 $S_a(x), S_{|b|}(x) \ll x.$

■ (Average Gap) We have long gaps on average, i.e.

$$\#\operatorname{Supp}_{a}(x), \#\operatorname{Supp}_{b}(x) = o(x)$$

(The denominator $\log x$ is removed from the bound of $\# \operatorname{Supp}_{b}$.)

■ (Strong Convergence) We have

$$\limsup_{n\to\infty} a(n)^{\frac{1}{n}}, \ \limsup_{n\to\infty} |b(n)|^{\frac{1}{n}} < q.$$

(This is a weaker bound than the previous one.)

• (Interlace) For any consecutive $n, n_+ \in \text{Supp}_b$ and $\ell \geq L$ with $n + \Delta \ell < n_+$, we have

$$\operatorname{Supp}_{a} \cap [n + \ell, n + \Delta \ell) \neq \emptyset.$$

Then, we have $\xi \notin \mathbb{Q}$.

Theorem 8 (Kaneko–Tachiya–S. (2024+))

Assume that there exists $H\colon \mathbb{N}\to \mathbb{R}_{\geq 1}$ and $\Delta,L>1$ satisfying

• (Average Bound) The coefficient is bounded by $o(t^{H(x)})$ on average, i.e.

$$S_a(x), S_{|b|}(x) = o(q^{H(x)}x).$$

• (Average Gap) We have gaps of size H(x) on average, i.e.

$$\# \operatorname{Supp}_{a}(x), \# \operatorname{Supp}_{b}(x) = o(x/H(x)) \quad (x \to \infty).$$

(Strong Convergence) We have

$$\limsup_{n \to \infty} a(n)^{\frac{1}{n}}, \ \limsup_{n \to \infty} |b(n)|^{\frac{1}{n}} < q.$$

■ (Interlace) For any consecutive $n, n_+ \in \operatorname{Supp}_b$ and $\ell \geq L$ with $n + \Delta \ell < n_+$, we have

$$\operatorname{Supp}_{a} \cap [n + \ell, n + \Delta \ell) \neq \emptyset.$$

Then, we have $\xi \notin \mathbb{Q}$.

Together with Kaneko's method to obtain independence, we can get

Theorem 9 (Kaneko–Tachiya–S. (2024+))

For $D \ge 2$ (not including D = 1), the series

$$\sum_{n=1}^{\infty}rac{n^{kD^k}}{q^{arphi(n)^D}} \quad (k\in\mathbb{Z}_{\geq 0})$$

do not satisfy any non-trivial algebraic relation of degree $\leq D$.