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1. Erdos’ Irrationality Monsters
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Irrationality Monsters

In this talk, we let g € Z>>. The series

DELHID DL D
=1 n=1

n
n=1 aq

3

1
> o(n) > 02(n) >\ Pn

are known to be irrational (due to Chowla, Erd8s, Duverney, etc.), where

[ ]
3
-

7(n): number of divisors of n.
(n) = #{(u,v) €72 | n = 2 + 2},
(n): Euler totient function defined by

=aTT(1-1).
eln) = H(l p)

ok(n): sum of the k-th power of divisors of n, i.e

ok(n) = de and write o(n) = o1(n)
dln
m pp: the n-th smallest prime number
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Pokemon fusion

A website called “Pokemon fusion” (seems unofficial)
https://pokemon.alexonsager.net/

which provides a service to “mix” two pokemons to get a chimera, e.g.
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Making chimera

Pikapie

Random
Random Random
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Making chimera

Caterchu
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Chimera of two Erdés’ series

We now look at two series of Erdds

> 7(n) =1
27 and ng(n)'

n=1

We shall mix these two series! Namely, we consider

One example of the consequence of our irrationality criterion is:

Theorem 1 (Kaneko—Tachiya—S. (2024+))




2. Basic irrationality of sparse base-q expansion
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Rewriting to power series & base-g expansion

Erdds’ series:

o0

By collecting the terms with the same value of p(m), we get

@P:i%(") with A, (n) = (Z): 1.
@w(m)=n

Thus, our problem is reduced the irrationality of power series

As the simplest case, we consider the base-g expansion

5::21(’:) and a(n)€{0,1,...,q—1}.

n=

What is special here is the size restriction of aj,.
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Basic principle: Long gap in the support implies irrationality

m For an arithmetic function a(n), we define the support of a(n) by

Supp, = {n € N | a(n) # 0}.

m For an infinite set &/ C N (clear from the context) and n € <7, let

ny = min{m € &/ | m > n} = (the element of &/ subsequent to n).

Proposition 1 (Long gap in the support implies irrationality)

For any infinitely long base-q expansion

= Z 3(n) with  # Supp, = oo

and arbitrary long gaps in the support, i.e.

sup (ny — n) = oo,
n€Supp,

we have £ € Q.
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First averaging technique: Finding long gap on average

In general, it is not easy to locate the exact position of long gap.

We can use the following average argument instead:

Lemma 1 (Finding long gap on average)

For any arithemtic function a(n) with Supp,, we have

#Supp,(x) = o(x) (x = o00) = sup (ny —n)=oo.
n€Supp,

Take N € Supp,, arbitrarily. Then, we have

N—minSupp, = > (ny —n) < #Supp,(N) x  sup  (ny —n)
nESupp,(N) n€Supp,(N)

and so, by using # Supp,(x) = o(x) (x — o), we get

sup +0(l) >0 (N — o0)

ng—n)> ———
nESuppa(N)( " )2 #SuPpa(N)

as desired. O
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Finding long gap for Erdds’ series

Recall our chimera:

In order to find long gaps, we need to have
#Suppy,, (x) = o(x)  (x — o0).
To this end, we can use the following:

Lemma 2 (Erdés (1935), Ford (1998))

For the counting function
Vi, = {n €N | p(m) = n for some m} = Suppa,,

(note that 7(m) > 0 for any m), we have

#V,(x) = #SuppAv (x) = exp(O((Iog log Iogx)z)).

X
log x
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3. Erdds’ criterion for the irrationality of sparse power series
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An issue for the current argument

Indeed, our argument has a flaw: Our method relies on the base-g expansion

Ezizay) with |4M€{QL“”q—1H

while our power series

8

Sp =

— q‘P(m
indeed have unbounded coefficient!

Proposition 2 (Erd8s (1935), Pomerance (1980))

For infinitely many n, we have

0

Ap(n) > n”  with 6 > 0.55655.

We again overcome this difficulty with an average argument.
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Erd6s’ simple criterion

We can indeed replace the size restriction
a(n)e{ovl’”'vq*l}

by an average boundedness:

Theorem 2 (Erdds’ simple criterion (1954))

Consider an infinite power series

= Z a((l:) with a(n) € Z>( and # Supp, = co.

n=1

Assume
m (Average Bound) “The coefficient is bounded on average” in the sense that

Sa(x) = Z a(n) < x.

n<x
m (Average Gap) “We have arbitrary long gaps on average” in the sense that
# Supp,(x) = o(x)  (x = o0).
We then have £ € Q.
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Average bound for Erdés’ series

For Erdés’ series

> 1 > Ap(n) . )
o = Z 2m = Zl p with Ay (n) = (Z) 1,
n= m)=n

m=1 ©

we have average boundedness of coefficient

ZAw(n): Z 1< x

n<x p(m)<x
by the following known result:

Lemma 3 (Erdés (1945), Bateman (1972))

For some constant ¢ > 0, we have

ZA%" Z L= TGS))X + O(x exp(—c(log x log Iogx)%)),
n<x @(m)<x
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How about the chimera series?

We now consider the “chimera” series:

Can we apply Erd&s’ simple criterion?

m For the Average Gap condition, we can still use Ford's result

#SUPPA; (x) = #Vp(x) =

Io; P (O ((loglog log X)2)> .

m However, for the Average Bound condition, we can prove

ZA;(n) = Z 7(m) ~ Cxlogx (x — o0)

n<x p(m)<x

for some constant C > 0. Thus, the Average Bound condition does NOT hold!
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4. A refined Erd8s criterion
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What does Erdés’ criterion mean?: Average picture & A refinement idea

(Average Bound) S,(x) < x

0o(1) (Average Gap) # Supp,(x) = o(x)

=e
=
+
I

long gap

Flatten a(n) (carry up)
o(1)

‘ still long gap

=e
=
+
I

long gap
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A refined Erdés criterion

Theorem 3 (Kaneko—Tachiya—S. (2024+))

Consider an infinite power series

o0
€= Z 3(n) with a(n) € Z>o and # Supp, = co.
n=1 q" B
Assume that there is H: N — R>; such that
m (Average Bound) The coefficient is bounded by o(t"()) on average, i.e.

Sa(x) = Z a(n) = o(g"™x).

n<x
m (Average Gap) We have gaps of size H(x) on average, i.e.
# Supp,(x) = o(x/H(x))  (x = o).
m (Strong Convergence) Our power series is strictly inside the disk of convergence, i.e.

1
n

limsupa(n)n < q.

n—o0

We then have £ € Q. (Remark: We need assumptions only for arbitrary large x.)
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Average bound for the chimera series

Our refined criterion:

Sa(x) =3 a(n) < ¢"™x and  #Supp,(x) = o —— ).
2 an<a o) =75

The chimera series:

SR < V1 C)
@,:Zin with A (n) = Z 7(m).
=1 9 @(m)=n
Since m
p(m)> T (m: large)
log m
we have
2

A= > r(m)< ST r(m) < x(logx)? < qiss ' x = o(qH¥)x)

n<x p(m)<x m<x log x
with H(x) = Iozq log log x. Also, Ford’s result gives (note that 7(n) > 0 for any n)

X

log

# Suppaz (x) = # Suppa,, (x) = -—— exp(O((log loglog x)?) ) = o(x/H(x)).

Strong convergence is easy to check. This completes the proof of the irrationality of £7.
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5. Proof of the refined criterion
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Basic principle

Write -
= a((]:) =év+q "Xy ~ d"¢—d =Xy
with "~
v=n(@ =32 and Xy=Xn(a) =3 w

nen 9 h>0

Lemma 4 (Small tail implies irrationality)

irRIfXN:Oand #Supp, =00 = EZQ.

a

Assume to the contrary that £ = 5. Then

0< dXy =dqg"¢ —dgVey = gVa—d > a(n)g" " ez
n<N
which implies
1
inf Xpy > —
”RI N Z d7
which contradicts the assumption on the infimum. O

24 /43



The average of the “H-shifted” tail

Our goal:

) a(N + h)
f Xy = h Xy = E _.
”III N =0 where N 2 o

We want to make the tail X small by making a gap
al(N+0)=a(N+1)=---=a(N+H-1)=0

of length H in the way

B a(N+h) a(N + h)
S SEUELUD SR U= )
h>0 h>H

Again, it is difficult to locate where Xy is small. Thus, we consider an average

R(x Hy =5 5 2 EH)

N<xh>H

of the “H-shifted” tails.
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Detecting small tail

Our goal:
a(N + h)

irRIfXN =0 where Xy= Z b .

o 9

We introduce the counting function for large tails
T(x.) = {N < x | Xy > e}.
Thus, out aim is to bound this quantity non-trivially as
#T(x,e) =o(x) (x— o)

to show there are plenty of small tails.

26 /43



Detecting small tail

Lemma 5 (Small tail lemma)

For any n € (0,1) (a technical parameter), we have the following. Assume

m (Average Gap) We have gaps of size H(x) on average, i.e.
# Supp,(x) = o(x/H(x)) (x — 00).

m (Average Small Tail) The H(x)-shifted tail is small on average, i.e.

R(nx, H(x)) = Z Z (N+h) =o(x) (x— o0).

N<nx h>H(x) q

(This is not assumed in our criterion and so should be proved later.)

For a fixed € > 0, we then have

#T(nx,e) = #{N <nx | Xy 2 e} = o(x) (x = o0).
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Proof of small tail lemma

We decompose as
T(nx,e) ={N <nx| Xy = ¢}
={N <nx| Xy > ¢ and Vh € [0, H(x)), a(N + h) =0}
U{N < nx| Xy > e and 3h € [0, H(x)), a(N + h) # 0}
={N < nx| Xy > e and Vh € [0, H(x)), a(N + h) =0}
U{N < nx | 3h € [0, H(x)), a(N + h) # 0}
= Tgap(nx,€) U To Gap(nx, €),

where

Teap(nx,€) == {N < nx | Xy > € and Vh € [0, H(x)), a(N + h) =0},
To Gap(mx,€) = {N < x| 3h € [0, H(x)), a(N + h) # 0}.

We then have
#T(WX»E) < #TGap(nX75) + # Tno Gap(nxva)'

We bound # Tgap(nx,€) and # Tno Gap(71X, €) separately.
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Small tail after a gap

For the gap part
Teap(nx,e) = {N < nx | Xy > € and Vh € [0, H(x)), a(N + h) = 0},

by the Average Small Tail Condition, i.e.

a(N a(N+h) h)
R(nx, H(x)) = > Z =o(x) (x— o0),
N<nx h>H(x) C]
we have
a(N + h
we Y A
NE Tgap(nx,€) NE Tgap(nx,e) h>0
-y oy A
NE Tgap(n%,€) h>H(x) q"
a(N -‘r h
<3 Z ANED) _ R, H(x)) = o)
N<nx h>H(x
while
D Xu e #Teap(nxe)
NE Tgap(nx,€)
and so

# Taap(nx, €) = o(x/e) = o(x) (x — o0).
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For the no gap part
o Gap(11x; ) = {N < mx | 3h € [0, H(x)), a(N + h) # 0},
by Average Gap Condition, i.e.
4 Supp,(x) = o(x/H(x)) (x = oo),
we have
# TNo Gap(1%,€) < # To Gap(1x — H(x), ) + H(x)

< > #{N <mx—H(x)|a(N+ h) # 0} + H(x)
0<h<H(x)

< D #{N <nx|a(N) #0} + H(x)
0<h<H(x)

= H(x)# Supp,(nx) + H(x)

< 2H(x) - # Supp,(x)

= o(H(x) - x/H(x)) = o(x).

This completes the proof of the small tail lemma.
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Average small tail lemma

What we need to prove is the Average Small Tail condition, i.e.
a(N + h)
R(nx, H(x)) = Z Z + =o(x) (x — o)
N<nx h>H(x

for some n € (0, 1), which is not assumed in our criterion.

Lemma 6 (Average small tail lemma)

Assume

m (Average Bound) The coefficient is bounded by tH() on average, i.e.
S:(x) = 3 a(n) = o(q")x).
n<x
m (Strong Convergence) Our power series is strictly inside the disk of convergence, i.e.

1
n

limsupa(n)» < q.

n—o0o

Then, there is 7 € (0,1) such that

R(nx, H(x)) = Z Z (M + k) =o(x) (x— o).

N<nx h>H(x) q
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Proof of average small tail lemma

We decompose the sum as

R H) = 32 5 2VEh)

N<nx h>H(x)

:Z Z a(N+h Z Z a(N+h)

N<nx H(x)<h<x—N q" N<nx he>x—N
= close(nxv H(X)) + Rfar(nxv H(X))

We then estimate the last two sums separately.
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Bound for close tail

For the “close” tail
a(N+ h
Rclose nx, H(X Z Z (7,7)7
N<nx Hx)<h<x—N 9

by the Average Bound condition, i.e.

Sa(x) = a(n) = o(q"™)x),
n<x
we have

close(nx H X) Z Z M

gh
N<nx H(x)<h<x—N

S a7 ST aN 4+ H) < 247 H95,(x) = o(x).

h>H(x) N<x—h
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Bound for far tail

We next consider the “far” tail

Rfar(nx H Z Z N + h

N<nx h>x—N

By the Strong Convergence condition, we can take € (0, 1) such that

lim sup a(n)% <g M <q ~  a(n)<qt-An

n— oo

we have

Rear(, H(x)) = Z Z a(N+h)

N<nx h>x—N
(1—2n)(N-+h)

<> d qu

N<nx h>x—N
(1—2n)x
<<"l q’f/X . < qf'r]x —_ 0(1).
g~

This completes the proof of average small tail lemma and so the refined Erdés criterion.
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Linear independence result

A straightforward application of the refined criterion with

Lemma 7 (Erdés—Hall (1977), Luca—Pomerance (2009))

#{n < x| p(¢(m)) = n for some m} = x exp(O(log Iogxlogloglogx)%).
(log )2

(here, the exponent 2 of the denominator (log x)? is important) gives

Theorem 4 (Kaneko-Tachiya—-S. (2024+))

The series

2 ot (k€220

are linearly independent over Q.

The series
Z qe(n (k € Z>o)
n=1

are linearly independent over Q.
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6. Extension to the higher degree irrationality
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Higher degree irrationality

Theorem 5 (Erdés (1957))

Let d € N. For an increasing sequence of positive integers

m<m<m<---

satisfying
. m
imsup — = oo
k— o0 kd ’
the series
oo
1
o= o
=1 9

does not satisfy any non-trivial algebraic equation of degree < d over Q, i.e.

P € Q[X]\ {0} and degP < d = P(a) #0.
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Expanding the algebraic relation

Write .# := {ny | k € N}. Our series:

Note that we have

n=1

where the coefficient is given by the representation function
rs(n) .= #{(m,...,ms) € A° | mi +---+ ms = n}.
For a given polynomial P(X) = X7 + ag_1X9=1 4+ ... 4+ a1 X + ap, we expand the expression
Pla)=a+ cy_1a9 -+ ca+a

to get

P(a) = Z W’
n=1

where the coefficients a(n), b(n) are given by
a(n) =rqg(n) and b(n) = cqg_1rg—1(n) +--- + cinn(n) + co.
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Expanding the algebraic relation

m Knight (1991) gave a “direct” proof of the transcendence of the Fredholm series
= 1
> =
k=19

m Bailey—Borwein—Crandall-Pomerance (2004) used the same idea to discuss the
distribution of 1's in the binary expansion and the higher degree irrationality.
m Kaneko (2017) extended the method to the algebraic independence.

m We can extend our method to the higher degree independence by Kaneko’s method.
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Erdés’ criterion with perturbation

Thus, what we need to consider is the irrationality of the series of the type

> b(n
Z 2 n) + with a(n) € Z>g, # Supp, = oo and b(n) € Z,

n=1
where a “perturbation” b(n) is newly inserted into our original series.

Theorem 6 (Erdés (1957))

Assume that there exists A, L > 1 satisfying

m (Average Bound) The coefficients are bounded on average, i.e.
Sa(x), Sppi(x) < x.
m (Average Gap) We have long gaps on average, i.e.
# Supp,(x) = o(x) and # Supp,(x) = o(x/ log x).

m (Strong Convergence) We have log a(n), log |b(n)| < n.
m (Interlace) For any consecutive n, ny € Suppy, and £ > L with n+ A¢ < ny, we have

Supp, N[n+ ¢, n+ AL) # @.

Then, we have £ € Q.
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Erdés’ criterion with perturbation

Theorem 7 (Erdés (1957) without proof)

Assume that there exists A, L > 1 satisfying

m (Average Bound) The coefficients are bounded on average, i.e.
Sa(x), Sppi(x) < x.
m (Average Gap) We have long gaps on average, i.e.
# Supp,(x), # Supp,,(x) = o(x)

(The denominator log x is removed from the bound of # Supp,,.)
m (Strong Convergence) We have

. 1 1
limsup a(n)n, limsup|b(n)|n < q.
n— oo n—oo

(This is a weaker bound than the previous one.)

m (Interlace) For any consecutive n, ny € Supp,, and £ > L with n+ A¢ < ny, we have
Supp, N[n+ £, n+ AL) # &.

Then, we have £ € Q.
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A refined Erdés’ criterion with perturbation

Theorem 8 (Kaneko—Tachiya—S. (2024+))

Assume that there exists H: N — R>; and A, L > 1 satisfying

m (Average Bound) The coefficient is bounded by o(t"(*)) on average, i.e.
Sa(x), Sjpj(x) = o(g"™)x).
m (Average Gap) We have gaps of size H(x) on average, i.e.
4 Supp,(x), # Supps(x) = o(x/H(x)) (x = o0).
m (Strong Convergence) We have

. i z
limsup a(n)n, limsup|b(n)|» < q.
n— oo n—o0

m (Interlace) For any consecutive n, ny € Suppy, and £ > L with n+ A¢ < ny, we have
Supp, N[n+ ¢, n+ AL) # 2.

Then, we have £ € Q.
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An application of the refined criterion with perturbation

Together with Kaneko's method to obtain independence, we can get

Theorem 9 (Kaneko—Tachiya—-S. (2024+))
For D > 2 (not including D = 1), the series

kDX

> n
Z qu(n)D (k € ZZO)

n=1

do not satisfy any non-trivial algebraic relation of degree < D.
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