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1. Erdős’ Irrationality Monsters

2 / 43



Pocket Monsters
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Irrationality Monsters

In this talk, we let q ∈ Z≥2. The series

∞∑
n=1

τ(n)

qn
,

∞∑
n=1

r(n)

qn
,

∞∑
n=1

σ(n)

qn
,

∞∑
n=1

1

qφ(n)
,

∞∑
n=1

1

qσ(n)
,

∞∑
n=1

σ(n)

n!
,

∞∑
n=1

σ2(n)

n!
,

∞∑
n=1

pn

n!

are known to be irrational (due to Chowla, Erdős, Duverney, etc.), where

τ(n): number of divisors of n.

r(n) := #{(u, v) ∈ Z2 | n = u2 + v2}.
φ(n): Euler totient function defined by

φ(n) := n
∏
p|n

(
1−

1

p

)
.

σk (n): sum of the k-th power of divisors of n, i.e.

σk (n) :=
∑
d|n

dk and write σ(n) := σ1(n).

pn: the n-th smallest prime number.
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Pokemon fusion

A website called “Pokemon fusion” (seems unofficial)

https://pokemon.alexonsager.net/

which provides a service to “mix” two pokemons to get a chimera, e.g.
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Making chimera
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Making chimera
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Chimera of two Erdős’ series

We now look at two series of Erdős

∞∑
n=1

τ(n)

qn
and

∞∑
n=1

1

qφ(n)
.

We shall mix these two series! Namely, we consider

∞∑
n=1

τ(n)

qφ(n)
.

One example of the consequence of our irrationality criterion is:

Theorem 1 (Kaneko–Tachiya–S. (2024+))

∞∑
n=1

τ(n)

qφ(n)
̸∈ Q.

Disclaimer

However, our method is purely an extension of the method for

∞∑
n=1

1

qφ(n)
.
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2. Basic irrationality of sparse base-q expansion
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Rewriting to power series & base-q expansion

Erdős’ series:

ξφ :=
∞∑
m=1

1

qφ(m)
.

By collecting the terms with the same value of φ(m), we get

ξφ =
∞∑
n=1

Aφ(n)

qn
with Aφ(n) :=

∑
φ(m)=n

1.

Thus, our problem is reduced the irrationality of power series

ξ :=
∞∑
n=1

a(n)

qn
.

As the simplest case, we consider the base-q expansion

ξ :=
∞∑
n=1

a(n)

qn
and a(n) ∈ {0, 1, . . . , q − 1}.

What is special here is the size restriction of an.
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Basic principle: Long gap in the support implies irrationality

Notation 1

For an arithmetic function a(n), we define the support of a(n) by

Suppa := {n ∈ N | a(n) ̸= 0}.

For an infinite set A ⊂ N (clear from the context) and n ∈ A , let

n+ := min{m ∈ A | m > n} = (the element of A subsequent to n).

Proposition 1 (Long gap in the support implies irrationality)

For any infinitely long base-q expansion

ξ =
∞∑
n=1

a(n)

qn
with #Suppa = ∞

and arbitrary long gaps in the support, i.e.

sup
n∈Suppa

(n+ − n) = ∞,

we have ξ ̸∈ Q.
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First averaging technique: Finding long gap on average

In general, it is not easy to locate the exact position of long gap.

We can use the following average argument instead:

Lemma 1 (Finding long gap on average)

For any arithemtic function a(n) with Suppa, we have

#Suppa(x) = o(x) (x → ∞) =⇒ sup
n∈Suppa

(n+ − n) = ∞.

Proof.

Take N ∈ Suppa arbitrarily. Then, we have

N −min Suppa =
∑

n∈Suppa(N)

(n+ − n) ≤ #Suppa(N)× sup
n∈Suppa(N)

(n+ − n)

and so, by using #Suppa(x) = o(x) (x → ∞), we get

sup
n∈Suppa(N)

(n+ − n) ≥
N

#Suppa(N)
+ o(1) → ∞ (N → ∞)

as desired.
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Finding long gap for Erdős’ series

Recall our chimera:

ξφ =
∞∑
m=1

1

qφ(m)
=

∞∑
n=1

Aφ(n)

qn
with Aφ(n) :=

∑
φ(m)=n

1.

In order to find long gaps, we need to have

#SuppAφ
(x) = o(x) (x → ∞).

To this end, we can use the following:

Lemma 2 (Erdős (1935), Ford (1998))

For the counting function

Vφ := {n ∈ N | φ(m) = n for some m} = SuppAφ

(note that τ(m) > 0 for any m), we have

#Vφ(x) = #SuppAφ
(x) =

x

log x
exp

(
O
(
(log log log x)2

))
.
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3. Erdős’ criterion for the irrationality of sparse power series
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An issue for the current argument

Indeed, our argument has a flaw: Our method relies on the base-q expansion

ξ =
∞∑
n=1

a(n)

qn
with a(n) ∈ {0, 1, . . . , q − 1}

while our power series

ξφ =
∞∑
m=1

1

qφ(m)
=

∞∑
n=1

Aφ(n)

qn
with Aφ(n) :=

∑
φ(m)=n

1

indeed have unbounded coefficient!

Proposition 2 (Erdős (1935), Pomerance (1980))

For infinitely many n, we have

Aφ(n) > nθ with θ > 0.55655.

We again overcome this difficulty with an average argument.
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Erdős’ simple criterion

We can indeed replace the size restriction

a(n) ∈ {0, 1, . . . , q − 1}

by an average boundedness:

Theorem 2 (Erdős’ simple criterion (1954))

Consider an infinite power series

ξ =
∞∑
n=1

a(n)

qn
with a(n) ∈ Z≥0 and #Suppa = ∞.

Assume

(Average Bound) “The coefficient is bounded on average” in the sense that

Sa(x) :=
∑
n<x

a(n) ≪ x .

(Average Gap) “We have arbitrary long gaps on average” in the sense that

#Suppa(x) = o(x) (x → ∞).

We then have ξ ̸∈ Q.
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Average bound for Erdős’ series

For Erdős’ series

ξφ =
∞∑
m=1

1

qφ(m)
=

∞∑
n=1

Aφ(n)

qn
with Aφ(n) :=

∑
φ(m)=n

1,

we have average boundedness of coefficient∑
n≤x

Aφ(n) =
∑

φ(m)≤x

1 ≪ x

by the following known result:

Lemma 3 (Erdős (1945), Bateman (1972))

For some constant c > 0, we have∑
n≤x

Aφ(n) =
∑

φ(m)≤x

1 =
ζ(2)ζ(3)

ζ(6)
x + O(x exp(−c(log x log log x)

1
2 )).
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How about the chimera series?

We now consider the “chimera” series:

ξτφ :=
∞∑
m=1

τ(n)

qφ(m)
.

By collecting the terms with the same value of φ(m), we get

ξτφ =
∞∑
n=1

Aτ
φ(n)

qn
with Aτ

φ(n) :=
∑

φ(m)=n

τ(m).

Can we apply Erdős’ simple criterion?

For the Average Gap condition, we can still use Ford’s result

#SuppAτ
φ
(x) = #Vφ(x) =

x

log x
exp

(
O
(
(log log log x)2

))
.

However, for the Average Bound condition, we can prove∑
n<x

Aτ
φ(n) =

∑
φ(m)<x

τ(m) ∼ Cx log x (x → ∞)

for some constant C > 0. Thus, the Average Bound condition does NOT hold!
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4. A refined Erdős criterion
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What does Erdős’ criterion mean?: Average picture & A refinement idea

n

a(n)

O(1)

N N + H

long gap

(Average Bound) Sa(x) ≪ x

(Average Gap) #Suppa(x) = o(x)

n

Flatten a(n) (carry up)

O(1)

N N + H

still long gap

long gap
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n

a(n)

o(qH)

N N + H

long gap

(Average Bound) Sa(x) = o(qHx)

(Average Gap) #Suppa(x) = o(x/H)

n

Flatten a(n) (carry up)

o(H)

N N + H

still long gap

long gap
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A refined Erdős criterion

Theorem 3 (Kaneko–Tachiya–S. (2024+))

Consider an infinite power series

ξ =
∞∑
n=1

a(n)

qn
with a(n) ∈ Z≥0 and #Suppa = ∞.

Assume that there is H : N → R≥1 such that

(Average Bound) The coefficient is bounded by o(tH(x)) on average, i.e.

Sa(x) :=
∑
n<x

a(n) = o(qH(x)x).

(Average Gap) We have gaps of size H(x) on average, i.e.

#Suppa(x) = o(x/H(x)) (x → ∞).

(Strong Convergence) Our power series is strictly inside the disk of convergence, i.e.

lim sup
n→∞

a(n)
1
n < q.

We then have ξ ̸∈ Q. (Remark: We need assumptions only for arbitrary large x .)
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Average bound for the chimera series

Our refined criterion:

Sa(x) :=
∑
n<x

a(n) ≪ qH(x)x and #Suppa(x) = o

(
x

H(x)

)
.

The chimera series:

ξτφ =
∞∑
n=1

Aτ
φ(n)

qn
with Aτ

φ(n) :=
∑

φ(m)=n

τ(m).

Since
φ(m) ≥

m

logm
(m : large)

we have∑
n<x

Aτ
φ(n) =

∑
φ(m)<x

τ(m) ≤
∑

m<x log x

τ(m) ≪ x(log x)2 ≤ q
2

log q
log log x

x = o(qH(x)x)

with H(x) := 3
log q

log log x . Also, Ford’s result gives (note that τ(n) > 0 for any n)

#SuppAτ
φ
(x) = #SuppAφ

(x) =
x

log x
exp

(
O
(
(log log log x)2

))
= o(x/H(x)).

Strong convergence is easy to check. This completes the proof of the irrationality of ξτφ.
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5. Proof of the refined criterion
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Basic principle

Write

ξ =
∞∑
n=1

a(n)

qn
= ξN + q−NXN ; qNξ − qNξN = XN

with

ξN = ξN(a) :=
∑
n<N

a(n)

qn
and XN = XN(a) :=

∑
h≥0

a(N + h)

qh
.

Lemma 4 (Small tail implies irrationality)

inf
N

XN = 0 and #Suppa = ∞ =⇒ ξ ̸∈ Q.

Proof.

Assume to the contrary that ξ = a
d
. Then

0 < dXN = dqNξ − dqNξN = qNa− d
∑
n<N

a(n)qN−n ∈ Z

which implies

inf
N

XN ≥
1

d
,

which contradicts the assumption on the infimum.
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The average of the “H-shifted” tail

Our goal:

inf
N

XN = 0 where XN =
∑
h≥0

a(N + h)

qh
.

We want to make the tail XN small by making a gap

a(N + 0) = a(N + 1) = · · · = a(N + H − 1) = 0

of length H in the way

XN =
∑
h≥0

a(N + h)

qh
=

∑
h≥H

a(N + h)

qh
.

Again, it is difficult to locate where XN is small. Thus, we consider an average

R(x ,H) :=
∑
N<x

∑
h≥H

a(N + h)

qh

of the “H-shifted” tails.
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Detecting small tail

Our goal:

inf
N

XN = 0 where XN =
∑
h≥0

a(N + h)

qh
.

We introduce the counting function for large tails

T (x , ε) := {N < x | XN ≥ ε}.

Thus, out aim is to bound this quantity non-trivially as

#T (x , ε) = o(x) (x → ∞)

to show there are plenty of small tails.
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Detecting small tail

Lemma 5 (Small tail lemma)

For any η ∈ (0, 1) (a technical parameter), we have the following. Assume

(Average Gap) We have gaps of size H(x) on average, i.e.

#Suppa(x) = o(x/H(x)) (x → ∞).

(Average Small Tail) The H(x)-shifted tail is small on average, i.e.

R(ηx ,H(x)) =
∑

N<ηx

∑
h≥H(x)

a(N + h)

qh
= o(x) (x → ∞).

(This is not assumed in our criterion and so should be proved later.)

For a fixed ε > 0, we then have

#T (ηx , ε) = #{N < ηx | XN ≥ ε} = o(x) (x → ∞).
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Proof of small tail lemma

We decompose as

T (ηx , ε) = {N < ηx | XN ≥ ε}
= {N < ηx | XN ≥ ε and ∀h ∈ [0,H(x)), a(N + h) = 0}

∪ {N < ηx | XN ≥ ε and ∃h ∈ [0,H(x)), a(N + h) ̸= 0}
= {N < ηx | XN ≥ ε and ∀h ∈ [0,H(x)), a(N + h) = 0}

∪ {N < ηx | ∃h ∈ [0,H(x)), a(N + h) ̸= 0}
=: TGap(ηx , ε) ∪ TNo Gap(ηx , ε),

where

TGap(ηx , ε) := {N < ηx | XN ≥ ε and ∀h ∈ [0,H(x)), a(N + h) = 0},
TNo Gap(ηx , ε) := {N < ηx | ∃h ∈ [0,H(x)), a(N + h) ̸= 0}.

We then have
#T (ηx , ε) ≤ #TGap(ηx , ε) + #TNo Gap(ηx , ε).

We bound #TGap(ηx , ε) and #TNo Gap(ηx , ε) separately.
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Small tail after a gap

For the gap part

TGap(ηx , ε) = {N < ηx | XN ≥ ε and ∀h ∈ [0,H(x)), a(N + h) = 0},

by the Average Small Tail Condition, i.e.

R(ηx ,H(x)) =
∑

N<ηx

∑
h≥H(x)

a(N + h)

qh
= o(x) (x → ∞),

we have ∑
N∈TGap(ηx,ε)

XN =
∑

N∈TGap(ηx,ε)

∑
h≥0

a(N + h)

qh

=
∑

N∈TGap(ηx,ε)

∑
h≥H(x)

a(N + h)

qh

≤
∑

N<ηx

∑
h≥H(x)

a(N + h)

qh
= R(ηx ,H(x)) = o(x)

while ∑
N∈TGap(ηx,ε)

XN ≥ ε ·#TGap(ηx , ε)

and so
#TGap(ηx , ε) = o(x/ε) = o(x) (x → ∞).
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No Gap is rare

For the no gap part

TNo Gap(ηx , ε) = {N < ηx | ∃h ∈ [0,H(x)), a(N + h) ̸= 0},

by Average Gap Condition, i.e.

#Suppa(x) = o(x/H(x)) (x → ∞),

we have

#TNo Gap(ηx , ε) ≤ #TNo Gap(ηx − H(x), ε) + H(x)

≤
∑

0≤h<H(x)

#{N < ηx − H(x) | a(N + h) ̸= 0}+ H(x)

≤
∑

0≤h<H(x)

#{N < ηx | a(N) ̸= 0}+ H(x)

= H(x)#Suppa(ηx) + H(x)

≤ 2H(x) ·#Suppa(x)

= o(H(x) · x/H(x)) = o(x).

This completes the proof of the small tail lemma.
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Average small tail lemma

What we need to prove is the Average Small Tail condition, i.e.

R(ηx ,H(x)) =
∑

N<ηx

∑
h≥H(x)

a(N + h)

qh
= o(x) (x → ∞)

for some η ∈ (0, 1), which is not assumed in our criterion.

Lemma 6 (Average small tail lemma)

Assume

(Average Bound) The coefficient is bounded by tH(x) on average, i.e.

Sa(x) =
∑
n<x

a(n) = o(qH(x)x).

(Strong Convergence) Our power series is strictly inside the disk of convergence, i.e.

lim sup
n→∞

a(n)
1
n < q.

Then, there is η ∈ (0, 1) such that

R(ηx ,H(x)) =
∑

N<ηx

∑
h≥H(x)

a(N + h)

qh
= o(x) (x → ∞).
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Proof of average small tail lemma

We decompose the sum as

R(ηx ,H(x)) =
∑

N<ηx

∑
h≥H(x)

a(N + h)

qh

=
∑

N<ηx

∑
H(x)≤h<x−N

a(N + h)

qh
+

∑
N<ηx

∑
h≥x−N

a(N + h)

qh

=: Rclose(ηx ,H(x)) + Rfar(ηx ,H(x)).

We then estimate the last two sums separately.
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Bound for close tail

For the “close” tail

Rclose(ηx ,H(x)) =
∑

N<ηx

∑
H(x)≤h<x−N

a(N + h)

qh
,

by the Average Bound condition, i.e.

Sa(x) =
∑
n<x

a(n) = o(qH(x)x),

we have

Rclose(ηx ,H(x)) =
∑

N<ηx

∑
H(x)≤h<x−N

a(N + h)

qh

≤
∑

h≥H(x)

q−h
∑

N<x−h

a(N + H) ≤ 2q−H(x)Sa(x) = o(x).
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Bound for far tail

We next consider the “far” tail

Rfar(ηx ,H(x)) =
∑

N<ηx

∑
h≥x−N

a(N + h)

qh
.

By the Strong Convergence condition, we can take η ∈ (0, 1) such that

lim sup
n→∞

a(n)
1
n < q1−2η < q ; a(n) ≪ q(1−2)n

we have

Rfar(x ,H(x)) =
∑

N<ηx

∑
h≥x−N

a(N + h)

qh

≤
∑

N<ηx

qN
∑

h≥x−N

q(1−2η)(N+h)

qN+h

≪η qηx ·
q(1−2η)x

qx
≪ q−ηx = o(1).

This completes the proof of average small tail lemma and so the refined Erdős criterion.
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Linear independence result

A straightforward application of the refined criterion with

Lemma 7 (Erdős–Hall (1977), Luca–Pomerance (2009))

#{n < x | φ(φ(m)) = n for some m} =
x

(log x)2
exp(O(log log x log log log x)

1
2 ).

(here, the exponent 2 of the denominator (log x)2 is important) gives

Theorem 4 (Kaneko–Tachiya–S. (2024+))

The series
∞∑
n=1

nk

qφ(φ(n))
(k ∈ Z≥0)

are linearly independent over Q.

Conjecture 1

The series
∞∑
n=1

nk

qφ(n)
(k ∈ Z≥0)

are linearly independent over Q.
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6. Extension to the higher degree irrationality
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Higher degree irrationality

Theorem 5 (Erdős (1957))

Let d ∈ N. For an increasing sequence of positive integers

m1 < m2 < m3 < · · ·

satisfying

lim sup
k→∞

mk

kd
= ∞,

the series

α :=
∞∑
k=1

1

qmk

does not satisfy any non-trivial algebraic equation of degree ≤ d over Q, i.e.

P ∈ Q[X ] \ {0} and degP ≤ d =⇒ P(α) ̸= 0.
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Expanding the algebraic relation

Write M := {nk | k ∈ N}. Our series:

α :=
∑

m∈M

1

qm
.

Note that we have

αs =

( ∑
m∈M

1

qm

)s

=
∞∑
n=1

rs(n)

qn
,

where the coefficient is given by the representation function

rs(n) := #{(m1, . . . ,ms) ∈ M s | m1 + · · ·+ms = n}.

For a given polynomial P(X ) = X d + ad−1X
d−1 + · · ·+ a1X + a0, we expand the expression

P(α) = αd + cd−1α
d−1 + · · ·+ c1α+ a0

to get

P(α) =
∞∑
n=1

a(n) + b(n)

qn
,

where the coefficients a(n), b(n) are given by

a(n) = rd (n) and b(n) = cd−1rd−1(n) + · · ·+ c1r1(n) + c0.
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Expanding the algebraic relation

Remark

Knight (1991) gave a “direct” proof of the transcendence of the Fredholm series

∞∑
k=1

1

q2k
.

Bailey–Borwein–Crandall–Pomerance (2004) used the same idea to discuss the
distribution of 1’s in the binary expansion and the higher degree irrationality.

Kaneko (2017) extended the method to the algebraic independence.

We can extend our method to the higher degree independence by Kaneko’s method.
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Erdős’ criterion with perturbation

Thus, what we need to consider is the irrationality of the series of the type

ξ :=
∞∑
n=1

a(n) + b(n)

qn
with a(n) ∈ Z≥0, #Suppa = ∞ and b(n) ∈ Z,

where a “perturbation” b(n) is newly inserted into our original series.

Theorem 6 (Erdős (1957))

Assume that there exists ∆, L > 1 satisfying

(Average Bound) The coefficients are bounded on average, i.e.

Sa(x), S|b|(x) ≪ x .

(Average Gap) We have long gaps on average, i.e.

#Suppa(x) = o(x) and #Suppb(x) = o(x/ log x).

(Strong Convergence) We have log a(n), log |b(n)| ≪ n.

(Interlace) For any consecutive n, n+ ∈ Suppb and ℓ ≥ L with n +∆ℓ < n+, we have

Suppa ∩[n + ℓ, n +∆ℓ) ̸= ∅.

Then, we have ξ ̸∈ Q.
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Erdős’ criterion with perturbation

Theorem 7 (Erdős (1957) without proof)

Assume that there exists ∆, L > 1 satisfying

(Average Bound) The coefficients are bounded on average, i.e.

Sa(x), S|b|(x) ≪ x .

(Average Gap) We have long gaps on average, i.e.

#Suppa(x),#Suppb(x) = o(x)

(The denominator log x is removed from the bound of #Suppb.)

(Strong Convergence) We have

lim sup
n→∞

a(n)
1
n , lim sup

n→∞
|b(n)|

1
n < q.

(This is a weaker bound than the previous one.)

(Interlace) For any consecutive n, n+ ∈ Suppb and ℓ ≥ L with n +∆ℓ < n+, we have

Suppa ∩[n + ℓ, n +∆ℓ) ̸= ∅.

Then, we have ξ ̸∈ Q.
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A refined Erdős’ criterion with perturbation

Theorem 8 (Kaneko–Tachiya–S. (2024+))

Assume that there exists H : N → R≥1 and ∆, L > 1 satisfying

(Average Bound) The coefficient is bounded by o(tH(x)) on average, i.e.

Sa(x), S|b|(x) = o(qH(x)x).

(Average Gap) We have gaps of size H(x) on average, i.e.

#Suppa(x),#Suppb(x) = o(x/H(x)) (x → ∞).

(Strong Convergence) We have

lim sup
n→∞

a(n)
1
n , lim sup

n→∞
|b(n)|

1
n < q.

(Interlace) For any consecutive n, n+ ∈ Suppb and ℓ ≥ L with n +∆ℓ < n+, we have

Suppa ∩[n + ℓ, n +∆ℓ) ̸= ∅.

Then, we have ξ ̸∈ Q.
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An application of the refined criterion with perturbation

Together with Kaneko’s method to obtain independence, we can get

Theorem 9 (Kaneko–Tachiya–S. (2024+))

For D ≥ 2 (not including D = 1), the series

∞∑
n=1

nkD
k

qφ(n)D
(k ∈ Z≥0)

do not satisfy any non-trivial algebraic relation of degree ≤ D.
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