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In this note, we shall develop the theory of the Rosser–Iwaniec sieve following
[1, Chapter 11], [2, Chapter 4] and [4].

1. Cast of characters – the sieve data –

We first introduce our setting of sieve problem.

Definition 1.1 (Sieve data). A sieve data is a tuple

(A,P, z,X, ω, r)
of

• A finite sequence of integers A called the sifting sequence.
• A set of prime numbers P called the sifting set.
• A real number z ≥ 2 called the level of sieve.
• A real number X > 0 used as an approximation of |A|.
• A multiplicative function ω(d) called the density function satisfying

0 ≤ ω(p) < 1 for all prime p
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and

(1.1) p 6∈ P =⇒ ω(p) = 0.

• An arithmetic function r(d).

satisfying the local condition

(1.2) ∀d | P (z), |Ad| = ω(d)X + r(d),

where P (z) is defined by

P (z) =
∏
p∈P
p<z

p

and Ad is the subsequence defined by

Ad = {a ∈ A | a ≡ 0 (mod d)} for d ∈ N.
As a convention, |Ad| counts with the multiplicities of elements in A.

Definition 1.2 (Sieve function). For a sieve data

(A,P, z,X, ω, r),
we define the sieve function S(A,P, z) by

(1.3) S(A,P, z) =
∑
a∈A

(a,P (z))=1

1,

where we count the multiplicities of elements in A.

The main aim of sieve theory is to estimate the sieve function

S(A,P, z)

for a given sieve data (A,P, z,X, ω, r).

2. The Eratosthenes–Legendre sieve

We now see how the setting of Section 1 is used in the development of sieves
by reviewing the Eratosthenes–Legendre sieve. The basis of this sieve is the
well-known formula

(2.1)
∑
d|n

µ(d) =

{
1 (if n = 1),
0 (if n > 1).

Theorem 2.1 (The Eratosthenes–Legendre sieve). For a sieve data

(A,P, z,X, ω, r),
we have

S(A,P, z) = XV (z) +R,

where
V (z) =

∑
d|P (z)

µ(d)ω(d) and R =
∑
d|P (z)

µ(d)r(d).
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Proof. On inserting (2.1) into (1.3), we can calculate S(A,P, z) as

S(A,P, z) =
∑
a∈A

∑
d|(a,P (z))

µ(d) =
∑
d|P (z)

µ(d)|Ad|.

On inserting (1.2) into this equation, we obtain the theorem. □
By recalling (1.1) and expaning the product, we can express V (z) as

V (z) =
∏
p<z

(1− ω(p)).

However, for practical applications, the power of the Eratosthenes–Legendre sieve
is limited since the remainder term R is a sum taken over very long range of d.

3. Sieve weights

In order to control the remainder term, we replace the Möbius function µ(d) by
some arithmetic function mimicking µ(d) with smaller support. By recalling the
proof of the Eratosthenes–Legendre sieve, we find that it suffices to consider the
arithmetic function defined and mimicking µ(d) over divisors d | P (z). Hence we
define lower and upper sieve weights as follows:

Definition 3.1 (Weight data). A weight data (P, D, z) is a triple of

• A set of primes P.
• Real numbers D and z with D ≥ z ≥ 2.

We call P the sifting set as before, D the level of support and z the
sifting level. As in Definition 1.1, we let

P (z) =
∏
p∈P
p<z

p

for a given weight data.

Definition 3.2 (Sieve weight). For a weight data (P, D, z), two arithmetic func-

tions λ−(d) and λ+(d) defined for d | P (z) are called a lower bound sieve
weight and an upper bound sieve weight, respectively, for the weight data
(P, D, z), if
(i) The lower and upper bound condition

(3.1)
∑
d|N

λ−(d) ≤
∑
d|N

µ(d) ≤
∑
d|N

λ+(d)

holds for every N | P (z).
(ii) The support condition

(3.2) d ≥ D and d | P (z) =⇒ λ±(d) = 0

holds.

We prepare the following general overture of sieve machinery.

Lemma 3.3 (Sieve lemma). Consider

• A sieve data (A,P, z,X, ω, r).
• A weight data (P, D, z).
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• Upper and lower sieve weights λ±(d) for the weight data (P, D, z).
Then, we have

XV −(z) +R−(D, z) ≤ S(A,P, z) ≤ XV +(z) +R+(D, z),

where

V ±(z) = V ±(A, D, z) =
∑
d|P (z)

λ±(d)ω(d),

R±(D, z) = R±(A, D, z) =
∑
d|P (z)
d<D

λ±(d)r(d).

Proof. By (2.1), as in the proof of the Erastosthenes–Legendre sieve,

S(A,P, z) =
∑
a∈A

∑
d|(a,P (z))

µ(d).

Since (a, P (z)) | P (z), Definition 3.2 implies∑
a∈A

∑
d|(a,P (z))

λ−(d) ≤ S(A,P, z) ≤
∑
a∈A

∑
d|(a,P (z))

λ+(d).

By changing the order of summation,∑
a∈A

∑
d|(a,P (z))

λ±(d) =
∑
d|P (z)

λ±(d)|Ad|.

By substituting (1.2) and checking the support of λ±(d), we arrive at the lemma.
□

4. The fundamental identity

Let us fix a weight data (P, D, z) and try to construct a sieve weight for (P, D, z).
Let (ρd) be a sequence of complex numbers defined for d | P (z). In principle, this
sequence is thought as an indicator function of some condition on the variable d and
so (ρd) is usually defined to take 0 or 1 as its values. In this note, if a square-free
integer d with d | P (z) is given, we use the following expression

(4.1) d = p1p2 · · · pr, z > p1 > p2 > · · · > pr, p1, p2, . . . , pr ∈ P , r ≥ 0

even without special mention. By using this notation, we define

(4.2) σd :=
∏

1≤i≤r

ρp1···pi if d ≥ 2 and σ1 := 1

and

(4.3) σd := (1− ρp1···pr )
∏

1≤i<r

ρp1···pi if d ≥ 2 and σ1 := 0.

For some sequence (ρd) with some superscripts, e.g. (ρ±d ), we denote the associated

σd by attaching the same type of superscripts, e.g. σ±
d .

We use the function σd for the truncation of Möbius function, i.e. we replace the
Möbius function µ(d) by λ(d) = µ(d)σd. Thus, we consider

(4.4)
∑
d|n

µ(d)σd
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instead of (2.1). The difference between (2.1) and (4.4) can be seen in

(4.5)
∑
d|n

µ(d) =
∑
d|n

µ(d)σd +
∑
d|n

µ(d)(1− σd),

in which we try to “trash” the second term on the right-hand side by using some
property of σd. In order to use the decomposition (4.5), we take closer look at the
“negated indicator function” (1 − σd).

In the following explanation, we think ρd or σd as indicator functions and we
identify the indicator function and the associated condition. We recall that the
condition σd is the conjunction of the conditions

ρp1 , ρp1p2 , ρp1p2p3 , ρp1p2p3p4 , . . . , ρp1···pr ,

which may be expressed as

ρp1 ∧ ρp1p2 ∧ ρp1p2p3 ∧ ρp1p2p3p4 ∧ · · · ∧ ρp1···pr .
Its negation is, by the de Moivre rule, given by a disjunction

(¬ρp1) ∨ (¬ρp1p2) ∨ (¬ρp1p2p3) ∨ (¬ρp1p2p3p4) ∨ . . . ∨ (¬ρp1···pr ).
Let us read these conditions from left, i.e. we call the condition (¬ρp1···pn) the n-th
condition. Then we classify the possibilities according to which condition is the
first condition failing to hold. Since this classification is disjoint, we can rewrite
the above condition by the disjoint disjunction of the conditions

ρp1 ∧ . . . ∧ ρp1···pn−1
∧ (¬ρp1···pn).

Each of the last conditions can be expressed in terms of the indicator function as

(1− ρp1···pn)
∏

1≤i<n

ρp1···pi = σp1···pn .

Therefore, in principle, we arrive at the decomposition

1− σd =
∑

1≤n≤r

σp1···pn

or, by using our convention σ1 = 0, we have

1− σd =
∑

0≤n≤r

σp1···pn .

We introduce two symbols

pmin(d) = min{p : prime factor of d}, pmax(d) = max{p : prime factor of d}
with conventions pmin(1) = +∞ and pmax(1) = 0. Then, we can write

1− σd =
∑

d1d2=d
pmin(d1)>pmax(d2)

σd1 .

This is our fundamental decomposition. Our above argument is rather informal
nature, so we shall give a more formal proof of the above identity.

Lemma 4.1. Let (P, D, z) be a weight data. For d | P (z), we have

1− σd =
∑

d1d2=d
pmin(d1)>pmax(d2)

σd1 .
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Proof. By the convention σ1 = 0, the right-hand side above is∑
d1d2=d

pmin(d1)>pmax(d2)

σd1 =
∑

1≤n≤r

σp1···pn .

By recalling the definition (4.3), this is

=
∑

1≤n≤r

(1− ρp1···pn)
∏

1≤i<n

ρp1···pi

=
∑

1≤n≤r

( ∏
1≤i<n

ρp1···pi −
∏

1≤i≤n

ρp1···pi

)
=

∑
1≤n≤r

∏
1≤i≤n−1

ρp1···pi −
∑

1≤n≤r

∏
1≤i≤n

ρp1···pi

=
∑

0≤n≤r−1

∏
1≤i≤n

ρp1···pi −
∑

1≤n≤r

∏
1≤i≤n

ρp1···pi

= 1−
∏

1≤i≤r

ρp1···pi = 1− σd.

This completes the proof. □

The decomposition given in Lemma 4.1 can be used to prove various identities
used in combinatorial sieves. We prepare rather general identity.

Lemma 4.2 (Fundamental identity). Let (P, D, z) be a weight data. For any
divisor N | P (z) and any arithmetic function f(d) defined for d | P (z),

(4.6)
∑
d|N

f(d)σd =
∑
d|N

f(d)−
∑
d|N

σd
∑

e|(N,P (pmin(d)))

f(de).

In particular, if f(d) is multiplicative, we have

(4.7)
∑
d|N

f(d)σd =
∑
d|N

f(d)−
∑
d|N

f(d)σd
∑

e|(N,P (pmin(d)))

f(e).

Proof. We have ∑
d|N

f(d)σd =
∑
d|N

f(d)−
∑
d|N

f(d)(1− σd).

It suffices to consider the second term of the right-hand side. By Lemma 4.1,∑
d|N

f(d)(1− σd) =
∑

d1d2|N
pmin(d1)>pmax(d2)

f(d1d2)σd1

=
∑
d1|N

σd1

∑
d2|N/d1

pmin(d1)>pmax(d2)

f(d1d2)

=
∑
d1|N

σd1

∑
d2|(N,P (pmin(d1))

f(d1d2)

This proves (4.6). By the condition pmin(d1) > pmax(d2), we have (d1, d2) = 1 in
the above summation. Thus, if f(d) is multiplicative, we can rewrite f(d1d2) =
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ψ(d1)ψ(d2) and arrive at∑
d|N

f(d)(1− σd) =
∑
d1|N

f(d1)σd1

∑
d2|(N,P (pmin(d1)))

f(d2).

This proves (4.7) and completes the proof. □

5. Preparatory lemmas for combinatorial sieves

As we mentioned, we want to “trash” the second term on the right-hand side of∑
d|n

µ(d) =
∑
d|n

µ(d)σd +
∑
d|n

µ(d)(1− σd).

The following lemma carry out such a disposal. Let

ν+ := 1, ν− := 0

so that ∓1 = (−1)ν± .

Lemma 5.1. Let (P, D, z) be a weight data and (ρ±d ) be sequences of real
numbers defined for d | P (z) satisfying the condition

(5.1) ρ±d =

{
1 if ν(d) ≡ ν∓ (mod 2),

0 or 1 if ν(d) ≡ ν± (mod 2).

Then, for every N | P (z), we have∑
d|N

µ(d)σ−
d ≤

∑
d|N

µ(d) ≤
∑
d|N

µ(d)σ+
d ,

where σ±
d is defined by (4.1), (4.2) and (4.3) with (ρ±d ).

Proof. By taking f(d) = µ(d) in (4.7), we have

(5.2)
∑
d|N

µ(d)σ±
d =

∑
d|N

µ(d)−
∑
d|N

µ(d)σ±
d

∑
e|(N,P (pmin(d)))

µ(e).

By definition (4.3) and condition (5.1), we have

(5.3) σ±
d =

{
0 if ν(d) ≡ ν∓ (mod 2),

0 or 1 if ν(d) ≡ ν± (mod 2).

Returning to (5.2), we have∑
d|N

µ(d)σ±
d =

∑
d|N

µ(d)− (−1)ν±
∑
d|N

σ±
d

∑
e|(A,P (pmin(d)))

µ(e)

=
∑
d|N

µ(d)±
∑
d|N

σ±
d

∑
e|(N,P (pmin(d)))

µ(e).

By (2.1), we find that the sum∑
d|N

σ±
d

∑
e|(N,P (pmin(d)))

µ(e)

is non-negative. Thus the assertion follows. □
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As we can see in Lemma 3.3, we need to estimate

V ±(z) =
∑
d|P (z)

µ(d)ω(d)σ±
d .

In particular, we expect that V ±(z) is rather close to

V (z) =
∑
d|P (z)

µ(d)ω(d) =
∏
p<z

(1− ω(p)).

As for this purpose, we prepare the following lemma.

Lemma 5.2. Let g(d) be a multiplicative function, (P, D, z) be a weight data,

and χ±(d) be the functions given in Lemma 5.1. Then,

V ±(z) = V (z)±
∑
d|P (z)

ν(d)≡ν±(mod 2)

ω(d)σ±
d V (pmin(d)).

Proof. By using the identity (4.7) with N = P (z) and f(d) = µ(d)ω(d), we have

V ±(z) =
∑
d|P (z)

µ(d)ω(d)σ±
d

=
∑
d|P (z)

µ(d)ω(d)−
∑
d|P (z)

µ(d)ω(d)σ±
d

∑
e|P (pmin(d))

µ(e)ω(e)

= V (z)−
∑
d|P (z)

µ(d)ω(d)σ±
d V (pmin(d))

By recalling (5.3), this is

= V (z)−
∑
d|P (z)

ν(d)≡ν±(mod 2)

µ(d)ω(d)σ±
d V (pmin(d))

= V (z)±
∑
d|P (z)

ν(d)≡ν±(mod 2)

ω(d)σ±
d V (pmin(d)).

This completes the proof. □

6. Rosser’s weight

In this note, we use Rosser’s construction of combinatorial sieves. In order to
develop his method, we need the notion of sieve dimension.

For a given weight data (P, D, z), let us introduce the sifting variable

s :=
logD

log z

for the logarithmic scale of the level of support relative to the level of sieve. In the
remaining part of this note, we take a parameter β ≥ 1 and assume

s ≥ β ≥ 1.

Then, we use the sequence (ρ±d ) defined by

(6.1) ρ±p1···pr =

{
0 if p1 · · · pr · p

β
r ≥ D and r ≡ ν± (mod 2),

1 otherwise.
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Then, we immediately find that our µ(d)σ±
d gives a sieve weight for (P, D, z).

Lemma 6.1. Let (P, D, z) be a weight data, β be a real number with s ≥ β ≥ 1,

and define σ±
d by the sequence (6.1). Then,

µ(d)σ−
d and µ(d)σ+

d

are lower and uppwer bound sieve weight for (P, D, z), respectively.

Proof. The upper and lower bound conditions (3.1) has been already proven in
Lemma 5.1. Therefore, it suffices to prove the support condition (3.2). We prove

the contraposition σ±
d 6= 0 ⇒ d < D. Assume σ±

d 6= 0 and write d as

d = p1p2 · · · pr, z > p1 > p2 > · · · > pr, p1, p2, . . . , pr ∈ P , r ≥ 0.

If r = 0, then we have d = 1 < D. If r = 1, then since d | P (z), we have

d = p1 < z = D
1
s ≤ D.

If r ≥ 2 and r ≡ ν± (mod 2), then we have ρ±d 6= 0 so that

d = p1 · · · pr ≤ p1 · · · p
β+1
r < D.

If r ≥ 2 and r 6≡ ν± (mod 2), then r − 1 ≡ ν± (mod 2) and ρ±p1···pr−1
6= 0 so that

d = p1 · · · pr ≤ p1 · · · p
β+1
r−1 < D

since pr−1 > pr and β ≥ 1. This completes the proof. □

The next task is to approximate

V ±(z) =
∑
d|P (z)

µ(d)ω(d)σ±
d

by the original

V (z) =
∑
d|P (z)

µ(d)ω(d)

From now on, we assume that the following data is given:

• A fixed sifting set P.
• A fixed level of sieve D.
• A fixed real numbers κ ≥ 0 and K > 1.
• A fixed density function ω ∈ Ω(P, κ,K).

• Rosser’s weight µ(d)σ±
d defined by (6.1) with a real parameter β ≥ 1.

unless otherwise specified.

Lemma 6.2. We have

V ±(z) = V (z)±
∑
n≥1

n≡ν± (mod 2)

Vn(z),

where

(6.2)

Vn(z) = Vn(D, z)

:=
∑

z>p1>···>pn
p1···pmp

β
m<D (1≤m<n,m≡n (mod 2))

p1···pnp
β
n≥D

ω(p1 · · · pn)V (pn).
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Proof. By Lemma 5.2 and the convention σ1 = 0, it suffices to show∑
d|P (z)

ν(d)≡ν± (mod 2)

ω(d)σ±
d V (pmin(d)) =

∑
n≥1

n≡ν± (mod 2)

Vn(z).

We first classify the terms by the value of ν(d) as∑
d|P (z)

ν(d)≡ν± (mod 2)

ω(d)σ±
d V (pmin(d)) =

∞∑
n=1

n≡ν± (mod 2)

∑
d|P (z)
ν(d)=n

ω(d)σ±
d V (pmin(d)).

By recalling the definition of σ±
d , we find

n ≡ ν± (mod 2) =⇒
∑
d|P (z)
ν(d)=n

ω(d)σ±
d V (pmin(d)) = Vn(z).

Thus the lemma follows. □

Lemma 6.3. We have n ≤ s− β =⇒ Vn(z) = 0.

Proof. If the sum in (6.2) is non-empty, then there is (p1, . . . , pn) satisfying

z > p1 > · · · > pn

p1 · · · pm · pβm < D (1 ≤ m < n, m ≡ n (mod 2))

p1 · · · pn · pβn ≥ D

Then, the first and the third condition give

zs = D ≤ p1 · · · p
β+1
n < zβ+n

so that n > s − β. Thus, if n ≤ s − β, then the sum in (6.2) becomes an empty
sum so that Vn(z) = 0. This completes the proof. □

7. Recurrence relation for Vn(z)

The main goal of the remaining part of this note is to give more satisfactory
analysis on the Rosser–Iwaniec sieve. The aim of this section is to derive some
recurrence formula of Vn(z). Recall Vn(z) defined for a positive integer n by

(6.2) Vn(z) = Vn(D, z) =
∑

z>p1>···>pn
p1···pmp

β
m<D (1≤m<n,m≡n (mod 2))

p1···pnp
β
n≥D

ω(p1 · · · pn)V (pn)

as in (6.2). In order to describe the result, for a positive integer n, we introduce

yn := D
1

β+n , zn(s) := min(D
1
s , D

1
β+εn ), εn :=

{
0 (if n is even),
1 (if n is odd).
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Lemma 7.1. For D ≥ 1, z ≥ 2, s := logD
log z and n ∈ N, we have

Vn(D, z) =


∑

y1≤p<z

ω(p)V (p) if n = 1,

∑
yn≤p<zn

ω(p)Vn−1

(
D

p
, p

)
if n ≥ 2 and s ≥ β − εn.

Proof. We first consider the case n = 1. By definition,

(7.1) V1(D, z) =
∑
z>p1

p
β+1
1 ≥D

ω(p1)V (p1).

The second summation condition can be rewritten as

pβ+1
1 ≥ D ⇐⇒ p1 ≥ D

1
β+1 = y1.

Then (7.1) now gives

V1(D, z) =
∑

y1≤p1<z

ω(p1)V (p1).

This completes the proof for the case n = 1.
We next consider the case n ≥ 2 and n is even. First, we remark that we may

introduce the condition p1 ≥ yn into the summation on the right-hand side of

Vn(D, z) =
∑

z>p1>···>pn
p1···pmp

β
m<D (1≤m<n,m≡n (mod 2))

p1···pnp
β
n≥D

ω(p1 · · · pn)V (pn)

since the original summation condition implies

D ≤ p1 · · · pnp
β
n ≤ pβ+n1 so that p1 ≥ D

1
β+n = yn.

Thus, we have

(7.2) Vn(D, z) =
∑

yn≤p1<z
p1>···>pn

p1···pmp
β
m<D (1≤m<n,m≡n (mod 2))

p1···pnp
β
n≥D

ω(p1 · · · pn)V (pn).

Then, we again rewrite the summation condition on the right-hand side. Since n is
even, the third condition is rewritten as

p1 · · · pmp
β
m < D (1 ≤ m < n, m ≡ n (mod 2))

⇐⇒ p1 · · · pmp
β
m < D (2 ≤ m < n, m ≡ n (mod 2))

⇐⇒ p2 · · · pmp
β
m < D/p1 (2 ≤ m < n, m ≡ n (mod 2)),

and the fourth condition is rewritten as

p1 · · · pnp
β
n ≥ D ⇐⇒ p2 · · · pnp

β
n ≥ D/p1.
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Therefore, by (7.2),

Vn(D, z) =
∑

yn≤p1<z
p1>···>pn

p2···pmp
β
m<D/p1 (2≤m<n,m≡n (mod 2))

p2···pnp
β
n≥D/p1

ω(p1 · · · pn)V (pn)

=
∑

yn≤p1<z

ω(p1)
∑

p1>p2>···>pn
p2···pmp

β
m<D/p1 (2≤m<n,m≡n (mod 2))

p2···pnp
β
n≥D/p1

ω(p2 · · · pn)V (pn)

=
∑

yn≤p1<z

ω(p1)Vn−1

(
D

p1
, p1

)
.

By assuming s ≥ β = β − εn, we have

zn(s) = min(D
1
s , D

1
β+εn ) = min(D

1
s , D

1
β ) = D

1
s = z.

Thus we obtain the assertion for the case n ≥ 2 and n is even.
We finally consider the case n ≥ 2 and n is odd. We can again write

Vn(D, z) =
∑

z>p1>···>pn
p1···pmp

β
m<D (1≤m<n,m≡n (mod 2))

p1···pnp
β
n≥D

ω(p1 · · · pn)V (pn)

=
∑

yn≤p1<z
p1>···>pn

p1···pmp
β
m<D (1≤m<n, m≡n (mod 2))

p1···pnp
β
n≥D

ω(p1 · · · pn)V (pn).

We then rewrite the third condition as

p1 · · · pmp
β
m < D (1 ≤ m < n, m ≡ n (mod 2))

⇐⇒ p1 · · · pmp
β
m < D (2 ≤ m < n, m ≡ n (mod 2)) and pβ+1

1 < D

⇐⇒ p2 · · · pmp
β
m < D/p1 (2 ≤ m < n, m ≡ n (mod 2)) and p1 < D

1
β+1 .

Also, we rewrite the fourth condition as

p1 · · · pnp
β
n ≥ D ⇐⇒ p2 · · · pnp

β
n ≥ D/p1.

Therefore, we have

Vn(D, z) =
∑

yn≤p1<zn
p1>···>pn

p2···pmp
β
m<D/p1 (2≤m<n,m≡n (mod 2))

p2···pnp
β
n≥D/p1

ω(p1 · · · pn)V (pn)

=
∑

yn≤p1<zn

ω(p1)
∑

p1>p2>···>pn
p2···pmp

β
m<D/p1 (2≤m<n,m≡n (mod 2))

p2···pnp
β
n≥D/p1

ω(p2 · · · pn)V (pn)

=
∑

yn≤p1<zn

ω(p1)Vn−1

(
D

p1
, p1

)
.
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This completes the proof. □

8. Partial summation with ω(p)V (p)

We apply partial summation to the recurrence equation obtained in Section 7.
For this purpose, we prepare some lemmas on partial summation with

ω(p)V (p).

To this end, we introduce the following requirement on ω(d):

Definition 8.1 (Density function). A multiplicative function ω(d) satisfying

0 ≤ ω(p) < 1 for all prime p

is called a density function. We denote the set of all density function by Ω.
For a set of primes P and a density function ω(d), if the condition

p 6∈ P =⇒ ω(p) = 0

holds, then we say that ω(d) is supported on P. We denote the set of all
density function supported on P by Ω(P).

Definition 8.2 (Sieve dimension). We say that a density function ω(d) has the
sieve dimension κ > 0 with constant K ≥ 2 if

V (w)

V (z)
=

∏
w≤p<z

(1− ω(p))−1 ≤
(
1 +

K

logw

)(
log z

logw

)κ
for all z ≥ w ≥ 2.

We denote the set of all density functions of sieve dimension κ > 0 supported
on P with constant K ≥ 2 by Ω(κ,K) = Ω(P, κ,K).

Lemma 8.3. For z ≥ 1, we have

V (z) = 1−
∑
p<z

ω(p)V (p).

Proof. We have

V (z) =
∑
d|P (z)

µ(d)ω(p) = 1 +
∑
d|P (z)
d>1

µ(d)ω(d).

We next classify d in the last sum by the value of pmax(d). Then,

V (z) = 1 +
∑
p<z

∑
d|P (z)

pmax(d)=p

µ(d)ω(d)

= 1−
∑
p<z

ω(p)
∑
d|P (p)

µ(d)ω(d) = 1−
∑
p<z

ω(p)V (p).

This completes the proof. □



14 Y. SUZUKI

Lemma 8.4. For z ≥ w ≥ 1, we have∑
w≤p<z

ω(p)
V (p)

V (z)
=
V (w)

V (z)
− 1.

Proof. By using Lemma 8.3 with z := z and z := w and taking their difference,

V (w)− V (z) = −
∑
p<w

ω(p)V (p) +
∑
p<z

ω(p)V (p) =
∑

w≤p<z

ω(p)V (p).

By dividing both sides by V (z), we obtain

V (w)

V (z)
− 1 =

∑
w≤p<z

ω(p)
V (p)

V (z)
.

This completes the proof. □

Lemma 8.5. Consider

• Real numbers z, w,D ≥ 2 with w ≥ z and write z = D
1
s , w = D

1
σ .

• A real-valued continuous function H(t) on t ∈ [s, σ].

Also, define a function E(w, z) by

V (w)

V (z)
=

(
log z

logw

)κ
+ E(w, z) for z ≥ w ≥ 2.

Then, we have∑
w≤p<z

ω(p)
V (p)

V (z)
H

(
logD

log p

)

=

∫ σ

s

H(t)
dtκ

sκ
+ E(w, z)H(σ) +

∫ z

w

E(x, z)dH

(
logD

log x

)
.

Proof. By Lemma 8.4 and partial summation,∑
w≤p<z

ω(p)
V (p)

V (z)
H

(
logD

log p

)
= −

∫ z

w

H

(
logD

log x

)
d

( ∑
x≤p<z

ω(p)
V (p)

V (z)

)

= −
∫ z

w

H

(
logD

log x

)
d

(
V (x)

V (z)

)
.

By integrating by parts,∑
w≤p<z

ω(p)
V (p)

V (z)
H

(
logD

log p

)

= −H(s) +
V (w)

V (z)
H(σ) +

∫ z

w

V (x)

V (z)
dH

(
logD

log x

)
.

By recalling the definition of E(w, z), we have∑
w≤p<z

ω(p)
V (p)

V (z)
H

(
logD

log p

)
= I(w, z) + E1(w, z),
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where

I(w, z) := −H(s) +

(
log z

logw

)κ
H(σ) +

∫ z

w

(
log z

log x

)κ
dH

(
logD

log x

)
E1(w, z) := E(w, z)H(σ) +

∫ z

w

E(x, z)dH

(
logD

log x

)
.

For I(w, z), we use integration by parts to obtain

I(w, z) = −
∫ z

w

H

(
logD

log x

)
d

(
log z

log x

)κ
.

By changing the variable via
logD

log x
= t,

we arrive at

I(w, z) = −
(

log z

logD

)κ ∫ z

w

H

(
logD

log x

)
d

(
logD

log x

)κ
=

∫ σ

s

H(t)
dtκ

sκ
.

This completes the proof. □

Lemma 8.6. Consider

• Real numbers z, w,D ≥ 2 with w ≥ z and write z = D
1
s , w = D

1
σ .

• A real-valued continuous function H(t) non-negative on t ∈ [s, σ].

Assume ω ∈ Ω(κ,K) and H(t)tκ is non-increasing for t ∈ [s, σ]. Then we have∑
w≤p<z

ω(p)
V (p)

V (z)
H

(
logD

log p

)
≤
∫ σ

s

H(t)
dtκ

sκ
+

(κ+ 1)KH(s)

logw
.

Proof. Since ω ∈ Ω(κ,K), under the notation of Lemma 8.5, we have

(8.1) E(w, z) ≤ K

logw

(
log z

logw

)κ
=

K

log z

(
log z

logw

)κ+1

.

By Lemma 8.5, it suffices to show

E1 := E(w, z)H(σ) +

∫ z

w

E(x, z)dH

(
logD

log x

)
≤ (κ+ 1)KH(s)

logw
.

By the assumption, H(t)tκ in non-increasing. ThusH(t) itself is also non-increasing.
Hence, by substituting (8.1) with using the positivity and monotonicity of H,

E1 ≤ K

log z

(
log z

logw

)κ+1

H(σ) +
K

log z

∫ z

w

(
log z

log x

)κ+1

dH

(
logD

log x

)
.

By integration by parts, we have

E1 ≤ KH(s)

log z
− K

log z

∫ z

w

H

(
logD

log x

)
d

(
log z

log x

)κ+1

.

Then we change the variable via

logD

log x
= t.



16 Y. SUZUKI

This gives

E1 ≤ KH(s)

log z
+

K

log z

∫ σ

s

H(t)
dtκ+1

sκ+1 =
KH(s)

log z
+

(κ+ 1)K

log z

∫ σ

s

H(t)tκ
dt

sκ+1 .

Since the function H(t)tκ is non-increasing,

E1 =
KH(s)

log z
+

(κ+ 1)KH(s)

log z

(
σ − s

s

)
≤ (κ+ 1)KH(s)

log z

(
σ

s

)
=

(κ+ 1)KH(s)

logw
.

This completes the proof. □

For a technical reason we face later, we modify Lemma 8.6 so as that the upper
endpoint is not necessarily to be z, the variable of the denominator V (z).

Lemma 8.7. Consider

• Real numbers z, v, w,D ≥ 2 with z ≥ v ≥ w and write

z = D
1
s , v = D

1
τ , w = D

1
σ .

• A real-valued continuous function H(t) non-negative on t ∈ (τ, σ].

Assume ω ∈ Ω(κ,K) and H(t)tκ is non-increasing for t ∈ (τ, σ]. Then we have∑
w≤p<v

ω(p)
V (p)

V (z)
H

(
logD

log p

)
≤
∫ σ

τ

H(t)
dtκ

sκ
+

3(κ+ 1)K2H(τ)

logw

(
τ

s

)κ
.

Proof. By Lemma 8.6 with z := v, we have∑
w≤p<v

ω(p)
V (p)

V (z)
H

(
logD

log p

)
=
V (v)

V (z)

∑
w≤p<v

ω(p)
V (p)

V (v)
H

(
logD

log p

)

≤ V (v)

V (z)

(∫ σ

τ

H(t)
dtκ

τκ
+

(κ+ 1)KH(τ)

logw

)
.

Since ω ∈ Ω(κ,K), we have

V (v)

V (z)
≤
(
τ

s

)κ(
1 +

K

log v

)
.

Therefore, we have∑
w≤p<v

ω(p)
V (p)

V (z)
H

(
logD

log p

)

≤
(
1 +

K

log v

)(∫ σ

τ

H(t)
dtκ

sκ
+

(κ+ 1)KH(τ)

logw

(
τ

s

)κ)
≤
∫ σ

τ

H(t)
dtκ

sκ
+

K

log v

∫ σ

τ

H(t)
dtκ

sκ
+

(
1 +

K

log v

)
(κ+ 1)KH(τ)

logw

(
τ

s

)κ
.

By the monotonicity of H(t)tκ−1, we have

K

log v

∫ σ

τ

H(t)
dtκ

sκ
=

κK

log v

∫ σ

τ

H(t)tκ−1 dt

sκ
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≤ κKH(τ)

log v

(
τ

s

)κ(
σ − τ

τ

)
≤ κKH(τ)

logw

(
τ

s

)κ
.

Also, we have

1 +
K

log v
≤ 1 +

K

log 2
≤ 1 +

3

2
K ≤ 2K

since K ≥ 2. Therefore, we have

K

log v

∫ σ

τ

H(t)
dtκ

sκ
+

(
1 +

K

log v

)
(κ+ 1)KH(τ)

logw

(
τ

s

)κ
≤ κKH(τ)

logw

(
τ

s

)κ
+

2(κ+ 1)K2H(τ)

logw

(
τ

s

)κ
≤ 3(κ+ 1)K2H(τ)

logw

(
τ

s

)κ
.

This completes the proof. □

9. Heuristic approximation of Vn(D, z)

We now apply Lemma 8.6 heuristically to guess the behavior of our sum

Vn(D, z).

We recall the recurrence formula

Vn(D, z) =


∑

y1≤p<z

ω(p)V (p) if n = 1,

∑
yn≤p<zn

ω(p)Vn−1

(
D

p
, p

)
if n ≥ 2 and s ≥ β − εn.

given in Lemma 7.1. We shall approximate Vn(D, z) in the form

Vn(D, z) ≈ V (z)fn(s)

with suitable fn(s). For n = 1, Lemma 8.5 with H(t) = 1 implies

V1(D, z) = V (z)
∑

y1≤p<z

ω(p)
V (p)

V (z)
≈ V (z)

∫
(s,β+1]

dtκ

sκ

by ignoring the error term, where the integral is thought to be zero if the integration
range is an empty set. Therefore, our first function f1(s) should be defined as

sκf1(s) =

∫
(s,β+1]

dtκ.

For general n, we use
Vn−1(D, z) ≈ V (z)fn−1(s)

as “the induction hypothesis” and Lemma 8.5 with H(t) = fn−1(t− 1) to get

Vn(D, z) =
∑

yn≤p<zn

ω(p)Vn−1

(
D

p
, p

)

≈ V (z)
∑

yn≤p<zn

ω(p)
V (p)

V (z)
fn−1

(
logD

log p
− 1

)

≈ V (z)

∫
(max(s,β+εn),β+n]

fn−1(t− 1)
dtκ

sκ
for s ≥ β − εn.
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Therefore, fn(s) should be defined as

sκfn(s) =

∫
(max(s,β+εn),β+n]

fn−1(t− 1)dtκ for s ≥ β − εn.

According to the above observations, we define functions fn(s) as follows.
We define a sequence of continuous functions

f1(s), f2(s), f3(s), . . .

recursively as follows. We first prepare the intervals

I+ := (β − 1,+∞) and I− := [β,+∞)

and

In = In(β) :=

{
I+ if n is odd,
I− if n is even.

The function fn(s) will be defined and continuous on In. Note that

In ⊆ (0,+∞) for all n ≥ 1

since β ≥ 1. The initial function f1(s) is defined on I1 by

(9.1) sκf1(s) :=

∫
(s,β+1]

dtκ,

where in what follows, the integration over empty interval is thought to be zero.
For n ≥ 2, the function fn(s) is defined on In by the recursion

(9.2) sκfn(s) :=

∫
(max(s,β+εn),β+n]

fn−1(t− 1)dtκ

Our final choice of β will satisfy

(9.3) β > 1 if κ > 1
2

and so we assume this condition. Under this assumption, the above definition of
(fn)

∞
n=1 is well-defined.

Proposition 9.1.
Functions (fn)

∞
n=1 are well-defined by (9.1) and (9.2) provided (9.3).

Proof. Since

In ⊆ (0,+∞),

the division by sκ in (9.1), (9.2) are legitimate. We prove the assertion and

(9.4) fn(s) � s−κ for s ∈ In ∩ (0, β] and odd n ≥ 1

with the implicit constant independent of s by the induction on n.

Initial case. For the case n = 1, (9.1) has no problem and we have

f1(s) ≤
(
β + 1

s

)κ
for s ∈ I1 ∩ (0, β] and so (9.4) holds.
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Recursion step from fn−1 to fn with even n ≥ 2. We should check the integrand
fn−1(t − 1) in (9.2) is already defined in the previous step and the integral has a
finite value. In the integral of (9.2), we have

t− 1 > max(s, β + εn)− 1 = max(s, β)− 1 ≥ β − 1.

Thus, fn−1(t−1) is already defined in the previous step. We next check the integral∫
(max(s,β+εn),β+n]

fn−1(t− 1)dtκ =

∫
(max(s,β),β+n]

fn−1(t− 1)dtκ

of (9.2) is finite. Since fn−1(t) is continuous on In−1, it suffices to check the integral∫ β+1

β

fn−1(t− 1)dtκ

around β is finite. By (9.4), if β > 1, we can simply check the finiteness as

0 ≤
∫ β+1

β

fn−1(t− 1)dtκ �
∫ β+1

β

dtκ

(t− 1)κ
≤
(
β + 1

β − 1

)κ
< +∞

If β = 1, by (9.4), we can still check the finiteness as

0 ≤
∫ β+1

β

fn−1(t− 1)dtκ �
∫ 2

1

tκ−1

(t− 1)κ
dt < +∞

since κ ≤ 1
2 if β = 1 by (9.3). Thus, fn(s) is well-defined.

Recursion step from fn−1 to fn with odd n ≥ 2. We should check the integrand
fn−1(t− 1) in (9.2) is already defined in the previous step, the integral has a finite
value and also the bound (9.4). In the integral of (9.2), we have

t− 1 ≥ max(s, β + εn)− 1 = max(s, β + 1)− 1 ≥ β.

Thus, fn−1(t − 1) is already defined in the previous step. Since fn−1(t − 1) is
continuous in the integration range including the end points, the integral in (9.2)
is finite. By (9.2) for the previous step, fn−1(s) is non-negative and so

sκfn(s) ≤
∫ β+n

β+1

fn−1(t− 1)dtκ < +∞

for s ∈ In ∩ (0, β]. This shows the bound (9.4). □
Under the assumption (9.3), we now successfully defined functions fn(s) by

sκf1(s) :=

∫
(s,β+1]

dtκ,

sκfn(s) :=

∫
(max(s,β+εn),β+n]

fn−1(t− 1)dtκ for n ≥ 2,

where fn(s) is defined on In. We next derive some basic properties of fn(s).

Proposition 9.2. Assume (9.3). We then have

(i) For n ≥ 1 and s ≥ β + n, we have fn(s) = 0.
(ii) For n ≥ 1, the function fn(s) is continuous and non-negative on s ∈ In.
(iii) For n ≥ 1, the functions sκfn(s) and fn(s) are non-increasing on s ∈ In.
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(iv) For n ≥ 2, we have

sκfn(s) =

∫ ∞

max(s,β+εn)

fn−1(t− 1)dtκ for s ∈ In.

(v) For n ≥ 2, the function fn(s) is of class C
1 on (β + εn,+∞).

(vi) For odd n ≥ 3, the function fn(s) is constant for β − 1 < s ≤ β + 1.

Proof.

(i) Immediate from the definition.

(ii), (iii) Immediate from the definition by using induction.

(iv) Easily follows by (i) proven above.

(v) Immediate from (iv) proven above and the continuity of fn(s).

(vi) Immediate from the definition. □
By the above obtained heuristics, we may expect

V ±(D, z) = V (z)±
∑
n≥1

n≡ν± (mod 2)

Vn(D, z)

≈ V (z)

(
1±

∑
n≥1

n≡ν± (mod 2)

fn(s)

)

provided the series

(9.5) T±(s) :=
∑
n≥1

n≡ν± (mod 2)

fn(s)

are convergent. We shall prove this convergence later for s ∈ I± with β in some

appropriate range. Assuming the series T±(s) converges, we define

F±(s) := 1± T±(s)

so that our heuristic approximation will be

V ±(D, z) ≈ V (z)F±(s).

We give some observations on T±(s) assuming the convergence of (9.5) for s ∈ I±.
We start with the partial sum

(9.6) TN (s) :=
∑

1≤n≤N
n≡N (mod 2)

fn(s) for N ∈ N.

We have the following result parallel to T±(s).

Proposition 9.3.

(i) For N ≥ 1, the function TN (s) is continuous and non-negative on IN .
(ii) For N ≥ 1, the function sκTN (s) and TN (s) are decreasing and

T±
N (s) = 0 for s ≥ β +N.

(iii) We have

(sκTN (s))′ = −κsκ−1TN−1(s− 1) for s > β + εN .



THE ROSSER–IWANIEC SIEVE 21

(iv) For odd N , we have

sκTN (s) = AN − sκ for β − 1 < s ≤ β + 1,

where
AN = AN (κ, β) := (β + 1)κTN (β + 1) + (β + 1)κ.

(v) For even N , we have

sκTN (s) = −BN + sκ −AN−1

∫ s

β

dtκ

(t− 1)κ
for β ≤ s ≤ β + 2,

where AN−1 is given as in (iv) and BN = BN (β, κ) is determined by

βκTN (β) = βκ −BN .

Proof.

(i), (ii) Immediately follows by Proposition 9.2.

(iii) For odd N , it suffices to consider the range s > β+1. We then have f1(s) = 0.
Therefore, by the definition of fn(s), we have

(sκTN (s))′ =
d

ds

( ∑
1≤n≤N

n≡1 (mod 2)

sκfn(s)

)

=
d

ds

( ∑
3≤n≤N

n≡1 (mod 2)

sκfn(s)

)

= −κsκ−1
∑

3≤n≤N
n≡1 (mod 2)

fn−1(s− 1)

= −κsκ−1
∑

2≤n≤N−1
n≡0 (mod 2)

fn(s− 1) = −κsκ−1TN−1(s− 1).

For even N , we consider the range s > β. We similarly have

(sκTN (s))′ =
d

ds

( ∑
2≤n≤N

n≡0 (mod 2)

sκfn(s)

)

= −κsκ−1
∑

2≤n≤N
n≡0 (mod 2)

fn−1(s− 1)

= −κsκ−1
∑

1≤n≤N−1
n≡1 (mod 2)

fn(s− 1) = −κsκ−1TN−1(s− 1).

This proves (iii).

(iv) For β − 1 < s ≤ β + 1, by Proposition 9.2 and the definition of f1(s), we have

sκTN (s) =
∑

3<n≤N
n≡1 (mod 2)

sκfn(s) + f1(s)
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=
∑

3<n≤N
n≡1 (mod 2)

(β + 1)κfn(β + 1) + (β + 1)κ − sκ

= (β + 1)κTN (β + 1) + (β + 1)κ − sκ = AN − sκ.

Therefore, (iv) holds.

(v) By the continuity of TN (s) at s = β from right and (iii), we have

sκTN (s) = βκTN (β)−
∫ s

β

TN−1(t− 1)dtκ for β ≤ s ≤ β + 2.

By (iv), we then have

sκTN (s) = βκ −BN −AN−1

∫ s

β

dtκ

(t− 1)κ
+

∫ s

β

dtκ

= −BN + sκ −AN−1

∫ s

β

dtκ

(t− 1)κ
for β ≤ s ≤ β + 2.

This proves (v). □

We next consider the full series T±(s). For convenience, we introduce

ε+ := 1 and ε− := 0.

Proposition 9.4. Assume the series T±(s) converge for s ∈ I±. Then,

(i) The convergence of the series T±(s) are compactly uniform on I±.

(ii) The functions T±(s) are positive and continuous on In.

(iii) The series T±(s) can be differentiated term by term on (β + ε±,+∞).

(iv) The functions T±(s) are continuously differentiable on (β + ε±,+∞).

(v) The functions T±(s), sκT±(s) are non-increasing and

lim
s→∞

sκT±(s) = 0.

(vi) We have

(sκT±(s))′ = −κsκ−1T∓(s− 1) for s > β + ε±.

(vii) We have

sκT+(s) = A− sκ for β − 1 < s ≤ β + 1,

where
A = A(κ, β) := (β + 1)κT+(β + 1) + (β + 1)κ.

(viii) We have

sκT−(s) = −B + sκ −A

∫ s

β

dtκ

(t− 1)κ
for β ≤ s ≤ β + 2,

where A is given as in (vii) and B = B(β, κ) is determined by

βκT−(β) = βκ −B.

(This strange notation is motivated by the equation βκF−(β) = B.)
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Proof.

(i) Take s0 ∈ I±. By the non-negativity and monotonicity of fn(s), the series

fn(s0) with n ≥ 1 with n ≡ ν± (mod 2)

is a majorizing sequence of

fn(s) with n ≥ 1 with n ≡ ν± (mod 2)

for s ≥ s0. Then, the result follows by the Weierstrass M -test.

(ii) Follows from (ii) of Proposition 9.2 and (i) proven above.

(iii), (iv) It suffices to prove the series∑
n≥3

n≡1 (mod 2)

fn(s)

can be differentiated term by term for s > β + 1 and∑
n≥2

n≡0 (mod 2)

fn(s)

can be differentiated term by term for s > β. Note that the functions fn(s) in

these series are of class C1 on the associated range I± by Proposition 9.2. The
point-wise convergence of these series are assumed in (9.5). Furthermore, by using
the definition of fn(s), the term-wise differentiated series are

κsκ−1
∑
n≥3

n≡1 (mod 2)

fn−1(s− 1) = −κsκ−1
∑
n≥2

n≡0 (mod 2)

fn(s− 1),

κsκ−1
∑
n≥2

n≡0 (mod 2)

fn−1(s− 1) = −κsκ−1
∑
n≥1

n≡1 (mod 2)

fn(s− 1)

which converge compact uniformly by (i) above. By these conditions, we can justify
the term-by-term differentiation and the continuity of the differentiated series.

(v) Follows by (i), (ii) and (iii) of Proposition 9.2.

(vi), (vii), (viii) Take the limit N → ∞ in (iii), (iv) and (v) of Proposition 9.3. □

10. Delay differential equation

We next study the functions

T±(s) :=
∑
n≥1

n≡ν± (mod 2)

fn(s).

conditionally defined assuming the convergence. By Proposition 9.4, these functions
are indeed a solution of the system of the delay-differential equations

(10.1) (sκT±(s))′ = −κsκ−1T∓(s− 1) for s > β + ε±

with initial conditions

sκT+(s) = A− sκ for β − 1 < s ≤ β + 1,

βκT−(β) = βκ −B



24 Y. SUZUKI

with some real numbers A,B. In Proposition 9.4, we have also seen

sκT−(s) = −B + sκ −A

∫ s

β

dtκ

(t− 1)κ
for β ≤ s ≤ β + 1.

In order to deal with the system of equations (10.1), we introduce

(10.2)

{
P (s) := F+(s) + F−(s) = T+(s)− T−(s) + 2

Q(s) := F+(s)− F−(s) = T+(s) + T−(s)
for s ≥ β.

Then, the above equation (10.1) implies

(10.3)

{
(sκP (s))′ = +κsκ−1P (s− 1)

(sκQ(s))′ = −κsκ−1Q(s− 1)
for s > β + 1.

The effect of considering the linear combinations P,Q instead of T± can be seen in
this equation (10.3): it eliminates the alternating feature of the delay-differential
equation (10.1). Also, we have

(10.4)


sκP (s) = A+B +A

∫ s

β

dtκ

(t− 1)κ

sκQ(s) = A−B −A

∫ s

β

dtκ

(t− 1)κ

for β ≤ s ≤ β + 1.

By requiring these equations hold in the range (β, β + 1), we extend P (s), Q(s) by

(10.5) sκP (s) = sκQ(s) = A for β − 1 < s < β.

Note that for the extended P (s), Q(s), the equation (10.3) can be written as{
(sκP (s))′ = +κsκ−1P (s− 1)

(sκQ(s))′ = −κsκ−1Q(s− 1)
for s ∈ (β, β + 1) ∪ (β + 1,+∞).

or, equivalently,

(10.6)

{
sP ′(s) = −κP (s) + κP (s− 1)

sQ′(s) = −κQ(s)− κQ(s− 1)
for s ∈ (β, β + 1) ∪ (β + 1,+∞).

In this section, we study the solutions of such delay-differential equations. Note
that the extended part (10.5) of P (s), Q(s) are not related to T±(s) by (10.2).

10.1. Delay differential equation. For a, b, C,D ∈ R and β ≥ 1, we consider the
delay differential equation of the form

(10.7) sR′(s) + aR(s) + bR(s− 1) = 0 for s ∈ (β, β + 1) ∪ (β + 1,+∞)

where the solution

R : (β − 1,+∞) → R
is assumed to be

(R1) The solution R(s) is continuous on [β,+∞).
(R2) The solution R(s) is differentiable on (β, β + 1) ∪ (β + 1,+∞).
(R3) The solution R(s) is locally integrable on (β − 1,+∞).
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with an initial function

(10.8) saR(s) = C −Dsa for β − 1 < s < β.

Consider the following sets of solutions R of (10.7):

DDE(a, b, β)

:= {R : (β − 1,+∞) → R | R satisfies (R1), (R2) and (10.7)},
DDE(a, b, β, C,D)

:= {R : (β − 1,+∞) → R | R satisfies (R1), (R2), (10.7) and (10.8)}.

10.2. Adjoint equation. The adjoint equation of (10.7) is given by

(10.9) (sr(s))′ = ar(s) + br(s+ 1) for s ∈ (0,+∞)

where the solution r(s) is assumed to be defined and of class C1 on (0,+∞). For
R ∈ DDE(a, b, β) and r(s) satisfying (10.9), define their Iwaniec pairing by

〈R, r〉(s) = 〈R, r〉b(s) := sr(s)R(s)− b

∫ s

s−1

r(t+ 1)R(t)dt for s > β,

where the integral on the right-hand side exists by (R3). By the continuity of r(s)
on (0,+∞), the continuity of R(s) on [β,+∞) and the initial value condition (10.8),
we find that 〈R, r〉(s) is continuous for s > β.

We use the solution of adjoint equation (any one of the solutions works) to study
the behavior of the given solution R(s) of the original delay differential equation.
The key property of the solution of the adjoint equation is the following.

Lemma 10.1. For R ∈ DDE(a, b, β) and a solution of r of (10.9),

〈R, r〉(s) := sr(s)R(s)− b

∫ s

s−1

r(t+ 1)R(t)dt

is a constant function for s > β.

Proof. For s ∈ (β, β + 1) ∪ (β + 1,+∞), by taking the derivative, we obtain

d〈R, r〉(s)
ds

= (sr(s))′R(s) + sr(s)R′(s)− br(s+ 1)R(s) + br(s)R(s− 1).

By (10.7) and (10.9), we have

d〈R, r〉(s)
ds

= (ar(s) + br(s+ 1))R(s) + r(s)(−aR(s)− bR(s− 1))

− br(s+ 1)R(s) + br(s)R(s− 1)

= ar(s)R(s)− ar(s)R(s) = 0.

Thus, the pairing 〈R, r〉(s) is a constant on (β, β + 1) and (β + 1,+∞). Then, the
continuity of 〈R, r〉(s) at s = β + 1, we obtain the result. □

In order to use the key property

〈R, r〉(s) = sr(s)R(s)− b

∫ s

s−1

r(t+ 1)R(t)dt = (constant),

we need a tool to calculate the constant on the right-hand side. For this purpose,
we can use the next lemma.
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Lemma 10.2. For R ∈ DDE(a, b, β, C,D) and a solution of r of (10.9), we have

〈R, r〉(s)

= βr(β)(R(β)− Cβ−a) + C lim
σ↘β

r(σ − 1)(σ − 1)1−a + bD

∫ β+1

β

r(t)dt

for s > β.

Proof. By Lemma 10.1, we have

〈R, r〉(s) = lim
σ↘β

〈R, r〉(σ).

We obviously have

lim
σ↘β

σr(σ)R(σ) = βr(β)R(β)

since R(s) is continuous at σ = β from right. We also have

−b
∫ σ

σ−1

r(t+ 1)R(t)dt = −b
∫ β

σ−1

r(t+ 1)R(t)dt+ o(1) as σ ↘ β.

By (10.8) and (10.9), we have

− b

∫ β

σ−1

r(t+ 1)R(t)dt

= C

∫ β

σ−1

(−br(t+ 1))

ta
dt+ bD

∫ β

σ−1

r(t+ 1)dt

= C

∫ β

σ−1

ar(t)− (tr(t))′

ta
dt+ bD

∫ β+1

β

r(t)dt+ o(1) as σ ↘ β.

By integration by parts, we have

C

∫ β

σ−1

ar(t)− (tr(t))′

ta
dt = C

∫ β

σ−1

ar(t)

ta
dt− C

∫ β

σ−1

(tr(t))′

ta
dt

= −C(r(β)β1−a − r(σ − 1)(σ − 1)1−a)

+ C

∫ β

σ−1

ar(t)

ta
dt− C

∫ β

σ−1

ar(t)

ta
dt

= −C(r(β)β1−a − r(σ − 1)(σ − 1)1−a).

By combining the above results, we have

〈R, r〉(s)
= lim
σ↘β

〈R, r〉(σ)

= lim
σ↘β

(
σr(σ)R(σ)− b

∫ σ

σ−1

r(t+ 1)R(t)dt

)
= lim
σ↘β

(
σr(σ)R(σ)− b

∫ β

σ−1

r(t+ 1)R(t)dt

)
= lim
σ↘β

(
σr(σ)R(σ)− C(r(β)β1−a − r(σ − 1)(σ − 1)1−a) + bD

∫ β+1

β

r(t)dt

)
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= βr(β)(R(β)− Cβ−a) + C lim
σ↘β

r(σ − 1)(σ − 1)1−a + bD

∫ β+1

β

r(t)dt.

This completes the proof. □

10.3. A solution of adjoint equation. Any solution of the adjoint equation

(sr(s))′ = ar(s) + br(s+ 1) for s > 0,

can be used to study the behavior of a given solution of the original equation. Thus,
it suffices to construct one particular solution for the adjoint equation for any a, b.
We try to consider the Laplace transform

r(s) =

∫ ∞

0

ϕ(x)e−sxdx for s > 0,

where for the convergence of the integral, we assume

(10.10) ϕ(x) � x−δ (x→ 0) and ϕ(x) � xC (x→ +∞)

with some constant δ < 1 and C ≥ 1. By taking the derivative, we then have

r′(s) = −
∫ ∞

0

xϕ(x)e−sxdx

By assuming the smoothness of ϕ(x) and using the integration by parts, we have

sr′(s) =

∫ ∞

0

xϕ(x)(e−sx)′dx = −
∫ ∞

0

(xϕ(x))′e−sxdx

since xϕ(x) � x1−δ → 0 as x↘ 0. This gives

(sr(s))′ = sr′(s) + r(s) =

∫ ∞

0

(−xϕ′(x))e−sxdx.

Thus, the requirement from the adjoint equation is given by

−xϕ′(x) = (a+ be−x)ϕ(x).

By rewriting slightly, we have

ϕ′(x)

ϕ(x)
= −a+ b

x
+ b · 1− e−x

x
.

Thus, as a candidate of ϕ(x), we may take

ϕ(x) = C0Φb(−x)x
−(a+b)

with some constant C0 > 0, where

Φb(z) := ebEin(−z) for z ∈ C

and Ein(z) is the so called entire exponential integral defined by

Ein(z) :=

∫ z

0

1− e−t

t
dt for z ∈ C,

which is obviously entire. For x ≥ 1, we have

(10.11) 0 ≤ Ein(x) =

∫ 1

0

1− e−t

t
dt+

∫ x

1

dt

t
≤ 1 + log x

and so the growth condition (10.10) holds around +∞ but the growth condition
around 0 holds only if a+b < 1. We thus need to modify the contour of integration.
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Before shifting of the integration, we determine the constant C0 so that the
behavior of r(s) as s → ∞ becomes simpler. We thus assume a + b < 1. We
consider the asymptotic behavior of∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx

as s→ ∞. By changing the variable via x = u/s, we get∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx = sa+b−1

∫ ∞

0

e−uΦb

(
−u
s

)
u−(a+b)du.

By Lebesgue’s dominated convergence theorem, we then have

(10.12)

∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx

∼ sa+b−1
∫ ∞

0

e−uu−(a+b)du = Γ(1− (a+ b))sa+b−1 (s→ ∞).

Thus, we use the normalization

r(s) =
1

Γ(1− (a+ b))

∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx.

We then shift the contour of integration. For r ≥ 0, let us define the contours

• The straight line L−(r) given by xe−πi from x = ∞ to x = r.

• The unit circle C (r) given by reiθ from θ = −π to θ = +π.

• The straight line L+(r) given by xe+πi from x = r to x = ∞.

We then define the Hankel contour H by

H (r) := L−(r) + C (r) + L+(r) and H := H (1).

We first assume a+ b < 1 to shift the contour.

Lemma 10.3. For a, b, s ∈ R with s > 0 and a+ b < 1, we have

1

2πi

∫
H

eszΦb(z)z
−(a+b)dz =

sin(a+ b)π

π

∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx.

Proof. For 0 < r ≤ 1, since a+ b < 1, we have∣∣∣∣∫
C (r)

eszΦb(z)z
−(a+b)dz

∣∣∣∣�s,b r
1−(a+b) → 0 as r → 0.

Thus, by Cauchy’s theorem, we have

1

2πi

∫
H

eszΦb(z)z
−(a+b)dz

=
1

2πi

∫
L+(0)

eszΦb(z)z
−(a+b)dz

+
1

2πi

∫
L−(0)

eszΦb(z)z
−(a+b)dz

=
e+(1−(a+b))πi

2πi

∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx

− e−(1−(a+b))πi

2πi

∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx
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=
sin(1− (a+ b))π

π

∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx

=
sin(a+ b)π

π

∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx.

This completes the proof. □

According to Lemma 10.3 and

sin(a+ b)π

π
=

1

Γ(a+ b)Γ(1− (a+ b))
,

we define the standard solution ra,b(s) by

ra,b(s) :=
Γ(a+ b)

2πi

∫
H

eszΦb(z)z
−(a+b)dz

for arbitrary a, b ∈ R. Note that when a+ b ∈ Z≤0, the pole of Γ(a+ b) is cancelled
with the zero of the integral. Since the contour H avoids the origin z = 0, the above
integral converges absolutely and compact uniformly with respect to s ∈ (0,+∞).
Therefore, ra,b(s), r

′
a,b(s) are analytic in any of variables a, b, s ∈ C with Re s > 0.

The expression

1

Γ(1− (a+ b))

∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx

is analytic in a and b in the range a+ b < 1 and coincides with the expression

Γ(a+ b)

2πi

∫
H

eszΦb(z)z
−(a+b)dz

assuming a+ b 6∈ Z≤0 by the above argument.
We check the above defined ra,b(s) is a solution of the adjoint equation.

Proposition 10.4. For a, b ∈ R, the standard solution ra,b(s) satisfies

(sra,b(s))
′ = ara,b(s) + bra,b(s+ 1) for s > 0.

Proof. By the identity theorem of analytic function, we may assume z = a + b is
not a pole of Γ(z). Then, recalling the definition of Φb(z), i.e.

Φb(z) := ebEin(−z)

and using the integration by parts, we have

sra,b(s) =
Γ(a+ b)

2πi

∫
H

(esz)′ebEin(−z)z−(a+b)dz

= −Γ(a+ b)

2πi

∫
H

esz(ebEin(−z)z−(a+b))′dz

= b
Γ(a+ b)

2πi

∫
H

eszebEin(−z) Ein′(−z)z−(a+b)dz

+ (a+ b)
Γ(a+ b)

2πi

∫
H

eszebEin(−z)z−(a+b+1)dz.

Since

Ein′(−z) = 1− e−(−z)

(−z)
=
ez − 1

z
,
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we further have

sra,b(s) = b
Γ(a+ b)

2πi

∫
H

e(s+1)zebEin(−z)z−(a+b+1)dz

+ a
Γ(a+ b)

2πi

∫
H

eszebEin(−z)z−(a+b+1)dz.

By taking the derivative with respect to s, we obtain

(sra,b(s))
′ = b

Γ(a+ b)

2πi

∫
H

e(s+1)zebEin(−z)z−(a+b)dz

+ a
Γ(a+ b)

2πi

∫
H

eszebEin(−z)z−(a+b)dz

= ar(s) + br(s+ 1).

This completes the proof. □

10.4. Asymptotic behavior of ra,b(s) as s→ ∞. We next study the asymptotic
behavior of ra,b(s) as s→ ∞, a prototype of which is already given in (10.12).

Lemma 10.5. For a, b ∈ R and N ∈ Z≥0 with a+ b− 1 < N , we have

ra,b(s) =
∑

0≤n<N

Φ
(n)
b (0)

(
a+ b− 1

n

)
sa+b−1−n

+
1

Γ(1− (a+ b))

∫ ∞

0

e−sxRN,b(−x)x
−(a+b)dx

for s > 0, where the binomical coefficient is defined by(
a+ b− 1

n

)
:=

(a+ b− 1) · · · (a+ b− n)

n!

and RN,b(x) is the remainder of the Taylor expansion

(10.13) Φb(z) =
∑

0≤n<N

Φ
(n)
b (0)

n!
zn +RN,b(z)

at z = 0.

Proof. By the identity theorem of analytic function, we may assume z = a + b is
not a pole of Γ(z). By substituting (10.13) into the definition of ra,b(s),

ra,b(s) =
∑

0≤n<N

Φ
(n)
b (0)

n!

Γ(a+ b)

2πi

∫
H

eszzn−(a+b)dz

+
Γ(a+ b)

2πi

∫
H

eszRN,b(z)z
−(a+b)dz.

For the former terms, by changing the variable and using Cauchy’s theorem,

Γ(a+ b)

2πi

∫
H

eszzn−(a+b)dz =
Γ(a+ b)

2πi
sa+b−1−n

∫
H

ezzn−(a+b)dz.

By using Hankel’s formula for Gamma function, we further have

Γ(a+ b)

2πi

∫
H

eszzn−(a+b)dz =
Γ(a+ b)

Γ((a+ b)− n)
sa+b−1−n.
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Since the recurrence formula Γ(s+ 1) = sΓ(s) gives

Γ(a+ b)

Γ((a+ b)− n)
= (a+ b− 1) · · · (a+ b− n),

we obtain ∑
0≤n<N

Φ
(n)
b (0)

n!

Γ(a+ b)

2πi

∫
H

eszzn−(a+b)dz

=
∑

0≤n<N

Φ
(n)
b (0)

(
a+ b− 1

n

)
sa+b−1−n.

For the last remainder term, since

|RN,b(z)| �N,b |z|
N for |z| ≤ 1

and N + 1− (a+ b) > 0, we have∣∣∣∣∫
C (r)

eszRN,b(z)z
−(a+b)dz

∣∣∣∣�s,b r
N+1−(a+b) → 0 as r → 0.

Therefore, we can shrink the Hankel contour to obtain

Γ(a+ b)

2πi

∫
H

eszRN,b(z)z
1−(a+b)dz

=
Γ(a+ b)

2πi

∫
L+(0)

eszRN,b(z)z
−(a+b)dz

+
Γ(a+ b)

2πi

∫
L−(0)

eszRN,b(z)z
−(a+b)dz

=
Γ(a+ b)

2πi
e+(1−(a+b))πi

∫ ∞

0

e−sxRN,b(−x)x
−(a+b)dx

− Γ(a+ b)

2πi
e−(1−(a+b))πi

∫ ∞

0

e−sxRN,b(−x)x
−(a+b)dx

=
Γ(a+ b)

π
(sin(1− (a+ b))π)

∫ ∞

0

e−sxRN,b(−x)x
−(a+b)dx

=
1

Γ(1− (a+ b))

∫ ∞

0

e−sxRN,b(−x)x
−(a+b)dx.

By combining the above results, we obtain the assertion. □

Proposition 10.6. For a, b ∈ R and N ∈ Z≥0, we have

(10.14) ra,b(s) =
∑

0≤n<N

Φ
(n)
b (0)

(
a+ b− 1

n

)
sa+b−1−n +O(sa+b−1−N )

for s ≥ 1, where the implicit constant depends on N, a, b. In particular, we
have

(10.15) ra,b(s) = sa+b−1 +O(sa+b−2),

for s ≥ 1, where the implicit constant depends on a, b, and so

(10.16) ra,b(s) ∼ sa+b−1 as s→ ∞,

where the rate of convergence depends on a, b.
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Proof. We first prove (10.14). Let M = M(a, b,N) be the smallest non-negative
integer with a+ b− 1 < M and N ≤M . By Lemma 10.5, we have

ra,b(s) =
∑

0≤n<M

Φ
(n)
b (0)

(
a+ b− 1

n

)
sa+b−1−n

+
1

Γ(1− (a+ b))

∫ ∞

0

e−sxRM,b(−x)x
−(a+b)dx.

Since ∑
N≤n<M

Φ
(n)
b (0)

(
a+ b− 1

n

)
sa+b−1−n �a,b,N sa+b−1−N ,

under the notation of Lemma 10.5, it suffices to show

1

Γ(1− (a+ b))

∫ ∞

0

e−sxRM,b(−x)x
−(a+b)dx� sa+b−1−M

for s ≥ 1. We decompose the integral as∫ ∞

0

e−sxRM,b(−x)x
−(a+b)dx =

∫ 1

0

+

∫ ∞

1

= I1 + I2, say.

In the integral I1, we have |−x| ≤ 1. Thus, by the definition of RM,b(−x), we have

|RM,b(−x)| �M,b x
M .

Therefore, we have

I1 �
∫ ∞

0

e−sxxM−(a+b)dx

� sa+b−1−M
∫ ∞

0

e−xxM−(a+b)dx� sa+b−1−M .

For the integral I2, note that

RM,b(−x) = ebEin(x) −
∑

0≤n<M

Φ
(n)
b (0)

n!
xn � xmax(b,M−1) ≤ xb+M−1

for x ≥ 1 by (10.11). Therefore, we have

I2 �
∫ ∞

1

e−sxxM−1−adx

� e−
s
2

∫ ∞

1

e−
s
2xxM−1−adx

� e−
s
2

∫ ∞

s

e−
1
2xxM−1−adx� e−

s
2 � sa+b−1−M

since s ≥ 1. By combining the above results, we obtain the result. □
10.5. Special cases of ra,b(s).

Lemma 10.7. For b ∈ R, we have
Φ

(0)
b (0) = 1,

Φ
(n)
b (0) = − b

n

n−1∑
ℓ=0

(
n

ℓ

)
Φ

(ℓ)
b (0) for n ≥ 1.
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Proof. The first formula is obvious. By taking the derivative, we have

Φ′
b(z) =

(
ebEin(−z))′ = −bEin′(−z)ebEin(−z) = −b

(
ez − 1

z

)
Φb(z)

and so
∞∑
n=1

Φ
(n)
b (0)

(n− 1)!
zn = −b

∞∑
k=1

zk

k!

∞∑
ℓ=0

Φ
(ℓ)
b (0)

ℓ!
zℓ

= −b
∞∑
n=1

(
1

n!

n−1∑
ℓ=0

(
n

ℓ

)
Φ

(ℓ)
b (0)

)
zn.

By comparing the coefficients, we obtain the assertion. □

Proposition 10.8.

(i) For a+ b = 1, we have ra,b(s) = 1.
(ii) We have

r 1
2 ,

1
2
(s) = 1, r1,1(s) = s− 1, r2,2(s) = s3 − 6s2 + 9s− 8

3 .

Proof.

(i) When a+ b = 1, we can take N = 1 in Lemma 10.5 to get

ra,b(s) = 1 +
1

Γ(1− (a+ b))

∫ ∞

0

e−sx(Φb(−x)− 1)x−(a+b)dx

since Φb(0) = 1. Also, since 1− (a+ b) = 0, the second term on the right-hand side
is zero and so ra,b(s) = 1. This proves (i).

(ii) The first formula r 1
2 ,

1
2
(s) = 1 follows by (i) proven above. We use Lemma 10.5

and Lemma 10.7. By taking N = 2, 4 in Lemma 10.5, we have

r1,1(s) = Φ
(0)
1 (0)

(
1

0

)
s+Φ

(1)
1 (0)

(
1

1

)
= s+Φ

(1)
1 (0),

r2,2(s) = Φ
(0)
2 (0)

(
3

0

)
s3 +Φ

(1)
2 (0)

(
3

1

)
s2 +Φ

(2)
2 (0)

(
3

2

)
s+Φ

(3)
2 (0)

(
3

3

)
= s3 + 3Φ

(1)
2 (0)s2 + 3Φ

(2)
2 (0)s+Φ

(3)
2 (0).

By Lemma 10.7, we have

Φ
(1)
1 (0) = −

(
1

0

)
Φ

(0)
1 (0) = −1,

Φ
(1)
2 (0) = −2

(
1

0

)
Φ

(0)
2 (0) = −2,

Φ
(2)
2 (0) = −

((
2

0

)
Φ

(0)
2 (0) +

(
2

1

)
Φ

(1)
2 (0)

)
= −(1− 4) = 3,

Φ
(3)
2 (0) = −2

3

((
3

0

)
Φ

(0)
2 (0) +

(
3

1

)
Φ

(1)
2 (0) +

(
3

2

)
Φ

(2)
2 (0)

)
= −2

3
(1− 6 + 9) = −8

3
.
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Combining the above results, we obtain the claimed formulas. □

10.6. Asymptotic behavior of ra,b(s) as s↘ 0. We next study the asymptotic
behavior of ra,b(s) as s↘ 0 for some values of a, b.

Lemma 10.9. We have∫ 1

0

1− e−t

t
dt−

∫ ∞

1

e−t

t
dt = γ.

Proof. By integration by parts, we have∫ 1

0

1− e−t

t
dt−

∫ ∞

1

e−t

t
dt

=
[
(1− e−t) log t

]1
0
−
∫ 1

0

e−t log tdt−
[
e−t log t

]∞
1

−
∫ ∞

1

e−t log tdt

= −
∫ ∞

0

e−t log tdt = −Γ′(1) = −Γ′(1)

Γ(1)
= γ.

This proves the lemma. □

Proposition 10.10. For a, b ∈ R with a+ b < 1 and a < 1, we have

ra,b(s) ∼
ebγΓ(1− a)

Γ(1− (a+ b))
sa−1 as s↘ 0.

Proof. Since a+ b < 1, we have

ra,b(s) =
1

Γ(1− (a+ b))

∫ ∞

0

exp

(
−sx+ b

∫ x

0

1− e−t

t
dt

)
x−(a+b)dx.

With the convention that∫ x

1

1− e−t

t
dt = −

∫ 1

x

1− e−t

t
dt if x ≤ 1,

we have

b

∫ x

0

1− e−t

t
dt = b

∫ 1

0

1− e−t

t
dt+ b

∫ x

1

1− e−t

t
dt

= b

∫ 1

0

1− e−t

t
dt− b

∫ x

1

e−t

t
dt+ b log x

and so

ra,b(s) =
1

Γ(1− (a+ b))

∫ ∞

0

exp

(
−sx+ b

∫ 1

0

1− e−t

t
dt− b

∫ x

1

e−t

t
dt

)
x−adx.

By changing variable via sx = u, we have

ra,b(s) =
sa−1

Γ(1− (a+ b))

∫ ∞

0

exp

(
−x+ b

∫ 1

0

1− e−t

t
dt− b

∫ x
s

1

e−t

t
dt

)
x−adx.
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By Lebesgue’s dominated convergence theorem (we need to construct the dominat-
ing function by considering two cases x ≤ s and s ≥ x), as s↘ 0, we have

ra,b(s)

sa−1 → 1

Γ(1− (a+ b))
exp

(
b

∫ 1

0

1− e−t

t
dt− b

∫ ∞

1

e−t

t
dt

)∫ ∞

0

e−xx−adx

=
Γ(1− a)

Γ(1− (a+ b))
exp

(
b

∫ 1

0

1− e−t

t
dt− b

∫ ∞

1

e−t

t
dt

)
=

ebγΓ(1− a)

Γ(1− (a+ b))

By Lemma 10.9. This completes the proof. □

10.7. Zeros of ra,b(s). Our choice of the parameter β = β(κ) will be related to a
zero of ra,b(s). We thus study the location of zeros of ra,b(s).

Proposition 10.11. For a, b ∈ R and s > 0, we have

r′a,b(s) = (a+ b− 1)ra−1,b(s).

Proof. By the identity theorem of analytic function, we may assume z = a + b is
not a pole of Γ(z). By taking the derivative of

ra,b(s) =
Γ(a+ b)

2πi

∫
H

eszΦb(z)z
−(a+b)dz,

we obtain

r′a,b(s) =
Γ(a+ b)

2πi

∫
H

eszΦb(z)z
−((a−1)+b)dz.

If a+ b− 1 6∈ Z≤0, we have

r′a,b(s) =
Γ(a+ b)

Γ(a+ b− 1)

Γ((a− 1) + b)

2πi

∫
H

eszΦb(z)z
−((a−1)+b)dz

=
Γ(a+ b)

Γ(a+ b− 1)
ra−1,b(s) = (a+ b− 1)ra−1,b(s).

If a+ b− 1 ∈ Z≤0, then since a+ b 6∈ Z≤0, we have a+ b = 1 and so a+ b− 1 < 1.
Therefore, by Lemma 10.3, we have

r′a,b(s) = Γ(a+ b)

(
sin((a− 1) + b)π

π

)∫ ∞

0

eszΦb(z)z
−((a−1)+b)dz

= 0 = (a+ b− 1)ra−1,b(s)

since now sin((a− 1) + b)π = (a+ b− 1) = 0. This completes the proof. □

Proposition 10.12. For a, b ∈ R with a+ b < 1, we have ra,b(s) > 0 for s > 0.

Proof. Since a+ b < 1, the standard solution ra,b(s) is given by

ra,b(s) =
1

Γ(1− (a+ b))

∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx.

Since the integrand of ∫ ∞

0

e−sxΦb(−x)x
−(a+b)dx
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is positive and the gamma factor is non-zero, the assertion follows. □

Proposition 10.13. For a, b ∈ R, we have

#{s ∈ (0,+∞) | ra,b(s) = 0} < max(a+ b, 1).

Proof. We prove the assertion in the range

a+ b ≤ n

by induction on the range of n.

Initial case n = 1. For n = 1, we have a + b ≤ 1 and so max(a + b, 1) = 1. When
a+b < 1, by Proposition 10.12, ra,b(s) is positive and so non-zero. When a+b = 1,
by (i) of Proposition 10.8, we have ra,b(s) = 1 and so ra,b(s) has no zero.

Induction step. Assume n ≥ 1 and the assertion is proved for a + b ≤ n. We shall
prove the assertion for n < a+ b ≤ n+ 1. Suppose that ra,b(s) has at least M ≥ 1

zeros in (0,+∞). By Rolle’s theorem, we can find (M − 1) zeros of r′a,b(s) between

these M zeros. However, by Proposition 10.11 and a + b − 1 > 0, zeros of r′a,b(s)
coincide with zeros of ra−1,b(s). Since (a− 1)+ b ≤ n, by the induction hypothesis,
we have M − 1 < max((a− 1) + b, 1). Therefore, by taking M to be the number of
all zeros of ra,b(s) (or, if there is no zero, then the assertion trivially holds), we get

#{s ∈ (0,+∞) | ra,b(s)} < max((a− 1) + b, 1) + 1 = max(a+ b, 2).

If max(a + b, 2) = a + b, then since a + b ≤ max(a + b, 1), the assertion holds. If
max(a+ b, 2) = 2, since the left-hand side is an integer, we have

#{s ∈ (0,+∞) | ra,b(s)} ≤ 1 < a+ b = max(a+ b, 1).

This completes the proof. □

Proposition 10.14. For a, b ∈ R, the following are equivalent:

(i) We have a+ b > 1 and b > 0.
(ii) The standard solution ra,b(s) has a zero in (0,+∞).

Proof.

(i) =⇒ (ii). Assume b > 0. We prove the existence of zero in the range

n < a+ b ≤ n+ 1

by induction on n ∈ N.
Initial case n = 1. For the initial case n = 1, we have 1 < a+ b ≤ 2 and so we can

take N = 1 in Lemma 10.5. Since Φb(0) = ebEin(0) = 1, this gives

ra,b(s) = sa+b−1 +
1

Γ(1− (a+ b))

∫ ∞

0

e−sx(Φb(−x)− 1)x−(a+b)dx

= sa+b−1

(
1 +

1

Γ(1− (a+ b))

∫ ∞

0

e−x
(
Φb

(
−x
s

)
− 1

)
x−(a+b)dx

)
.

As s↘ 0, since b > 0, we have∫ ∞

0

e−x
(
Φb

(
−x
s

)
− 1

)
x−(a+b)dx =

∫ ∞

0

e−x
(
ebEin( x

s ) − 1
)
x−(a+b)dx
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≥
∫ ∞

1

e−x
(
ebEin( x

s ) − 1
)
x−(a+b)dx

≥
(
ebEin( 1

s ) − 1
)∫ ∞

1

e−xx−(a+b)dx→ ∞.

Thus, by using
1

Γ(1− (a+ b))
= Γ(a+ b)

sin(a+ b)π

π
< 0

for 1 < a+ b < 2, we obtain ra,b(s) < 0 for sufficiently small s. Since ra,b(s) > 0 for
all large s by Proposition 10.6, the intermediate value theorem implies that ra,b(s)
has a zero.

Induction step. We consider the induction step from the (n− 1)-th case to the n-th
case with n ≥ 2. Assume n < a+ b ≤ n+ 1. By the adjoint equation

(sra,b(s))
′ = ara,b(s) + bra,b(s+ 1),

we have

sr′a,b(s) = (a− 1)ra,b(s) + bra,b(s+ 1).

By Proposition 10.11, we have

(a+ b− 1)sra−1,b(s) = (a− 1)ra,b(s) + bra,b(s+ 1).

By the induction hypothesis and n − 1 < (a − 1) + b ≤ n, we can find the largest
zero α1 of ra−1,b(s). By chosing s = α1, we get

0 = (a− 1)ra,b(α1) + bra,b(α1 + 1).

By the maximality of α1 and Proposition 10.11, we find that ra,b(s) is strictly
increasing for s > α1. Since b > 0, we have

0 = (a− 1)ra,b(α1) + bra,b(α1 + 1) > (a+ b− 1)ra,b(α1).

This shows ra,b(α1) < 0. Since ra,b(s) > 0 for all large s by Proposition 10.6, the
intermediate value theorem implies that ra,b(s) has a zero.

(ii) =⇒ (i). We prove the contraposition, i.e. we prove that ra,b(s) has no zeros if
a+ b ≤ 1 or b ≤ 0. For the case a+ b ≤ 1, Proposition 10.13 shows that ra,b(s) has
no zero. We thus consider the case a+ b > 1 and b ≤ 0. If b = 0, then

Φb(x) = ebEin(x) = 1

and so

ra,b(s) =
Γ(a+ b)

2πi

∫
H

eszΦb(z)z
−(a+b)dz =

Γ(a+ b)

2πi

∫
H

eszz−(a+b)dz = sa+b−1

by Hankel’s formula, which shows ra,b(s) has no zero. Thus, we may assume b < 0.
By the adjoint equation

(sra,b(s))
′ = ara,b(s) + bra,b(s+ 1),

we have

sr′a,b(s) = (a− 1)ra,b(s) + bra,b(s+ 1).

Assume to the contrary that ra,b(s) has a zero in (0,+∞). By Proposition 10.13, we
can take the largest one, say s = α. By substituting s = α in the above equation,

αr′a,b(α) = (a− 1)ra,b(α) + bra,b(α+ 1) = bra,b(α+ 1).
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By (10.16) of Proposition 10.6, we should have r′a,b(α) ≥ 0 since otherwise ra,b(s) <
0 for s > α sufficiently close to α and ra,b(s) > 0 for large s > α and so the inter-
mediate value theorem shows there exists a zero larger than α, which contradicts
the maximality of α. Similarly, the intermediate value theorem and the maximality
of α shows ra,b(α+ 1) > 0. Recalling b < 0, we then have

0 ≤ αr′a,b(α) = bra,b(α+ 1) < 0

which is a contradiction. This completes the proof. □
10.8. Propagation of the inequality.

Lemma 10.15. For real numbers a, b, β with β ≥ 1 and functions

R ∈ DDE(a, b, β),

assume that the follwing are satisfied:

(1) We have b > 0.
(2) For the standard solution r(s) := ra,b(s), we have

〈R, r〉(s) = 0.

(3) We have r(s) > 0 for s ≥ β.

When the initial conditions

(10.17)

{
R(s) is not constantly zero on β − 1 < s < β

R(s) ≥ 0 for β − 1 < s < β

hold, then we have:

(i) We have R(s) > 0 for s ≥ β.
(ii) The function saR(s) is non-increasing for s ≥ β.

Proof.

(i). By the assumption (2), we have

(10.18) sr(s)R(s) = b

∫ s

s−1

r(t+ 1)R(t)dt for s > β.

By taking the limit s↘ β, using (10.17) and recalling (1) and (3), we get

βr(β)R(β) = b

∫ β

β−1

r(t+ 1)R(t)dt > 0

and so R(β) > 0. Assume to the contrary to (i), suppose that R(s) ≤ 0 for some
s ≥ β. By the continuity, we can then take the least s1 ≥ β such that R(s1) ≤ 0.
Since R(β) > 0 as we have seen, s1 > β. Then, by the minimality of s1, we have
R(s) ≥ 0 for β − 1 < s < s1 and R(s) > 0 for s slightly smaller than s1. Then, by
(3) and (10.18), we have

s1r(s1)R(s1) = b

∫ s1

s1−1

r(t+ 1)R(t)dt > 0.

This contradicts the choice of s1 and so (i) holds.

(ii). This follows by (i) proven above since

(saR(s))′ = asa−1R(s) + sa−1 · sR′(s) = −bsa−1R(s− 1) ≥ 0 for s ≥ β,

which follows by R ∈ DDE(a, b, β). □
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Lemma 10.16. For real numbers a, b, s0 with b, s0 > 0 such that

(10.19) ra,±b(s) > 0 for s > s0,

we have (
ra,+b(s)

ra,−b(s)

)′

> 0 for s > s0.

Consequently, we have

ra,+b(s)

ra,−b(s)
is strictly increasing for s > s0.

Proof. The adjoint equations

(sra,±b(s))
′ = ara,±b(s)± bra,±b(s+ 1)

can be rewritten as

(s1−ara,±b(s))
′ = s−a(sra,±b(s))

′ − as−ara,±b(s) = ±bs−ara,±b(s+ 1).

Therefore, by the assumption (10.19) and b > 0, we have(
ra,+b(s)

ra,−b(s)

)′

=

(
s1−ara,+b(s)

s1−ara,−b(s)

)′

=
(s1−ara,+b(s))

′ · s1−ara,−b(s)− s1−ara,+b(s) · (s
1−ara,−b(s))

′

(s1−ara,−b(s))
2

= b ·
ra,+b(s+ 1)ra,−b(s) + ra,+b(s)ra,−b(s+ 1)

sra,−b(s)
2 > 0 for s > s0

and the assertion follows. □

Lemma 10.17. For real numbers a, b, β with b > 0, β ≥ 1 and functions

R± ∈ DDE(a,±b, β),
assume that the follwing are satisfied:

(1) For the standard solutions r±(s) := ra,±b(s) of the adjoint equations

(sr±(s))′ = ar±(s)± br±(s+ 1),

the Iwaniec pairing is given by

(10.20) 〈R±, r±〉(s) = 0 for s > β

(2) We have r±(s) > 0 for s ≥ β.

When the initial conditions

(10.21)

{
R+(s) is not constantly zero on β − 1 < s < β

|R−(s)| ≤ R+(s) for β − 1 < s < β

hold, then there exists a real number η = η(R±) ∈ (0, 1) such that

|R−(s)| < ηR+(s) for s ≥ β.

Proof. We first prove the following claim:
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Claim 10.18. For s ≥ β and η ∈ (0, 1] satisfying{
|R−(t)| ≤ ηR+(t)

R+(t) is not constantly zero
for s− 1 < t < s.

We then have
|R−(s)| < ηR+(s).

Proof. By (10.20), we have

(10.22) sr±(s)R±(s) = ±b
∫ s

s−1

r±(t+ 1)R±(t)dt for s > β.

By the continuity, this equation holds even if s = β. By choosing the sign −, taking
the absolute value and using the assumption, we have

sr−(s)|R−(s)| ≤ b

∫ s

s−1

r−(t+ 1)|R−(t)|dt

≤ ηb

∫ s

s−1

r−(t+ 1)R+(t)dt.

Since R+(t) is not constantly zero on (s− 1, s), by Lemma 10.16 and (2), we have

sr−(s)|R−(s)| ≤ ηb

∫ s

s−1

r−(t+ 1)

r+(t+ 1)
r+(t+ 1)R+(t)dt

<
r−(s)

r+(s)
· ηb

∫ s

s−1

r+(t+ 1)R+(t)dt.

By using (10.22) with the sign +, we get

sr−(s)|R−(s)| < r−(s)

r+(s)
ηsr+(s)R+(s) = ηsr−(s)R+(s)

and so |R−(s)| < ηR+(s). This proves the claim. □

We first prove |R−(s)| < R+(s) for s ≥ β. Assume the contrary. Then, by

the continuity of R±(s) for s ≥ β, we can take the smallest s1 ≥ β such that

|R−(s1)| ≥ R+(s1). By the minimality of s1 and (10.21), we have |R−(t)| ≤ R+(t)

for s1 − 1 < t < s1. If s1 = β, by the assumption, R+(t) is not constantly zero

for s1 − 1 < t < s1. If s1 > β, by the minimality of s1, we have |R−(t)| < R+(t)

with t ≥ β slightly smaller than s1 and so again R+(t) is not constantly zero for

s1−1 < t < s1. We can thus apply Claim to get |R−(s1)| < R+(s1), a contradiction.

Thus, |R−(s)| < R+(s) for s ≥ β and so R+(s) 6= 0 for s ≥ β.

Since |R−(s)| < R+(s) for s ≥ β and since R±(s) are continuous for s ≥ β,

we can take η ∈ (0, 1) such that |R−(s)| ≤ ηR+(s) for β ≤ s ≤ β + 1. We then

prove |R−(s)| ≤ ηR+(s) for s ≥ β. Assume the contrary. Then, by the continuity of

R±(s) for s ≥ β, we can take the smallest s1 ≥ β+1 such that |R−(s1)| ≥ ηR+(s1).

By the minimality of s1 and by the choice of η, we have |R−(t)| ≤ ηR+(t) for

s1−1 < t < s1. Since R
+(s) 6= 0 for s ≥ β as proved in the previous paragraph, we

can apply the claim to get |R−(s1)| < ηR+(s1), a contradiction. This completes
the proof. □
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10.9. Some integral inequalities. To study the asymptotic behavior of the solu-
tion R(s) of the original delay-differential equation, we need some integral inequal-
ities. In this subsection, we develop such integral inequalities.

We start with introducing a function ξ(u) following, e.g. Hildebrand and Tenen-
baum [3, Section 2]

Proposition 10.19. The function

η(ξ) :=
eξ − 1

ξ
=

∫ 1

0

etξdt

is increasing for all ξ ∈ R and

lim
ξ→−∞

η(ξ) = 0, η(0) = 1, lim
ξ→+∞

η(ξ) = +∞.

Proof. This is obvious from the expression

η(ξ) =

∫ 1

0

etξdt.

This completes the proof. □
By Proposition 10.19, we can define an increasing function

ξ : (0,+∞) → R
as the inverse function of

η : R → (0,+∞),

i.e. we define ξ(s) be the unique real number ξ = ξ(s) such that

eξ − 1

ξ
= s.

We then prepare some basic facts on the function ξ(s).

Proposition 10.20.

(i) We have

ξ(s) = log s+ log log s+
log log s

log s
+O

((
log log s

log s

)2)
for s ≥ ee.

(ii) We have

s− s− 1

ξ(s)
>

1

2

and

ξ′(s) =
1

s− s−1
ξ(s)

for s > 1. Consequently, we have

ξ′(s) =
1

s
exp

(
O

(
1

log s

))
for s ≥ e.
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(iii) We have

ξ′′(s) = −
1− 1

ξ(s) +
ξ
′
(s)(s−1)

ξ(s)
2

(s− s−1
ξ(s) )

2

for s > 1. Consequently, we have

ξ′′(s) = − 1

s2
exp

(
O

(
1

log s

))
for s ≥ e.

Proof.

(i) We may assume s is sufficiently large. By the defining equation

eξ(s) − 1

ξ(s)
= s,

we have

(10.23) ξ(s)− log ξ(s) +O(e−ξ(s)) = log s.

Since ξ(s) → ∞ as s→ ∞, this gives

ξ(s) � log s.

On re-inserting this formula into (10.23), we get

ξ(s) = log s+ log log s+O(1).

On re-inserting this formula into (10.23), we further get

ξ(s) = log s+ log ξ(s) +O

(
1

s log s

)
= log s+ log log s+ log

(
1 +

log log s

log s

)
+O

(
1

log s

)
= log s+ log log s+

log log s

log s
+O

(
1

log s

)
.

A further iteration gives

ξ(s) = log s+ log ξ(s) +O

(
1

s log s

)
= log s+ log log s+ log

(
1 +

log log s

log s

)
+O

(
log log s

(log s)2

)
= log s+ log log s+

log log s

log s
+O

((
log log s

log s

)2)
.

This completes the proof.

(ii) By the formula for the derivative of inverse function, we have

(10.24) ξ′(s) =
1

η′(ξ(s))
for s > 0.

Note that

(10.25) η′(ξ) =

∫ 1

0

tetξdt >
1

2
for ξ > 0.
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For ξ > 0, by integration by parts, we have

η′(ξ) =
eξ

ξ
− 1

ξ

∫ 1

0

etξdt =
eξ

ξ
− η(ξ)

ξ

=
eξ − 1

ξ
− η(ξ)− 1

ξ
= η(ξ)− η(ξ)− 1

ξ
.

For s > 1, by substituting ξ = ξ(s) > ξ(1) = 0, we get

η′(ξ) = s− s− 1

ξ(s)
.

By (10.24) and (10.25), we get the first half of the assertion. The latter asymptotic
formula is then a corollary of the former one since η′(ξ(s)) ≥ 1

2 for s ≥ 1.

(iii) The first equation is a corollary of (ii). The latter asymptotic formula also
follows from (ii) for large s. For small s ≥ e, say e ≤ s ≤ s0, it suffices to see
ξ′′(s) � 1. By the first half of (iii), we have

ξ′′(s) ≥
(
1− 1

ξ(e)

)
(ξ′(s))2 � 1

since

η(1) =

∫ 1

0

etdt = e− 1 < e and so 1 < ξ(e).

We also have ξ′′(s) � 1 by the continuity of ξ′′(s). This completes the proof. □

For the decay of the special solutions, we use the following lemma.

Lemma 10.21. Let κ > 0 and E ≥ 1. Then, for any continuous function f(s)
on [s0,+∞) with s0 ≥ 0 satisfying the inequality

(10.26) (s− E)|f(s)| ≤ κ

∫ s

s−1

|f(t)|dt for large s ≥ s0 + 1

obeys the bound

|f(s)| < exp

(
−
∫ s

κ

ξ

(
t

κ

)
dt+ c log(s+ e)

)
for s ≥ s0 with some constant c = c(f) ≥ 1.

Proof. We first prove a preliminary inequality. Take c ≥ 1 chosen later. In this
proof, implicit constants may depend on κ,E but should be independent of c. Let

ϕ(s) :=

∫ s

κ

ξ

(
t

κ

)
dt− c log s

for s ≥ κ. By taking the derivatives, we have

(10.27) ϕ′(s) = ξ

(
s

κ

)
− c

s
and ϕ′′(s) =

1

κ
ξ′
(
s

κ

)
+

c

s2
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and so by Proposition 10.20, we have

(10.28)

ϕ′(s) = ξ

(
s

κ

)(
1 +O

(
c

s log s

))
= ξ

(
s

κ

)(
1 +O

(
1

s

))
ϕ′′(s) � 1

s


for s ≥ s1(c, κ)

By the mean value theorem, we then have

(10.29)

ϕ′(t) = ϕ′(s) +O

(
1

s

)
= ξ

(
s

κ

)
eO( 1

s ) for s− 1 ≤ t ≤ s with s ≥ s1(c, κ).

By (10.26), we have

(10.30)

|f(s)|eϕ(s) ≤ κeϕ(s)

s− E

∫ s

s−1

|f(t)|eϕ(t) · e−ϕ(t)dt

≤ κeϕ(s)

s− E

(∫ s

s−1

e−ϕ(t)dt

)
max

s−1≤t≤s
|f(t)|eϕ(t)

for large s ≥ s0 + 1. For the last integral, by (10.29), we have

eϕ(s)
∫ s

s−1

e−ϕ(t)dt =
eϕ(s)

ξ( sκ )

(∫ s

s−1

e−ϕ(t)ϕ′(t)dt

)
eO( 1

s )

=
eϕ(s)−ϕ(s−1) − 1

ξ( sκ )
eO( 1

s ) for s ≥ s1(c, κ).

By Taylor approximation, (10.27) and (10.28), for some σ ∈ (s− 1, s), we have

ϕ(s)− ϕ(s− 1) = ϕ′(s) +
1

2
ϕ′′(σ)

= ξ

(
s

κ

)
− c

s
+O

(
1

s

)
for s ≥ s1(c, κ).

Therefore, since

eξ(
s
κ ) ≥ eξ(

s
κ )− c

s � s log s for s ≥ s1(c, κ),

by using the definition of ξ( sκ ), we have

eϕ(s)
∫ s

s−1

e−ϕ(t)dt =
eξ(

s
κ )− c

s

ξ( sκ )
eO( 1

s )

=
eξ(

s
κ ) − 1

ξ( sκ )
e−

c
s+O( 1

s )

=
s

κ
e−

c
s+O( 1

s ) for s ≥ s1(c, κ).

On inserting this estimate into (10.30), we have

|f(s)|eϕ(s) ≤ 1

1− E
s

e−
c
s+O( 1

s ) max
s−1≤t≤s

|f(t)|eϕ(t)
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≤ e−
c
s+

C
s max
s−1≤t≤s

|f(t)|eϕ(t) for s ≥ s1(c, κ, E, s0).

with some C = C(E, κ) ≥ 0. By taking

c := C + 1,

we arrive at

(10.31) |f(s)|eϕ(s) ≤ e−
1
s max
s−1≤t≤s

|f(t)|eϕ(t) for s ≥ s1(κ,E, s0).

We refer the s1(κ,E, s0) in (10.31) as s1 below.
We now prove the assertion. Since log(s+ e) � log s for s ≥ e, it suffices to show

(10.32) |f(s)| < L exp

(
−
∫ s

κ

ξ

(
t

κ

)
dt+ c log s

)
for s ≥ s1,

where

L := max
s1−1≤s≤s1

|f(s)|eϕ(s).

Indeed, for the original assertion with s ≥ s0, we can replace c by some larger value.
Assume that (10.32) does not hold. Then, there should be some s ≥ s1 with

|f(s)|eϕ(s) ≥ L.

By the continuity of |f(s)|eϕ(s), we can take smallest s̃ ≥ s1 with

|f(s̃)|eϕ(s̃) ≥ L.

By the minimality of s̃ and the definition of L, we have

|f(s)|eϕ(s) < L for s1 − 1 ≤ s ≤ s̃.

By (10.31), We then have

L ≤ |f(s̃)|eϕ(s̃) ≤ e−
1
s̃ max
s̃−1≤t≤s̃

|f(t)|eϕ(t) ≤ e−
1
s̃L,

which is a contradiction. Therefore, the assertion must be true. □

Later, we need the following lower-bound version of Lemma 10.21.

Lemma 10.22. Let κ > 0 and E ≥ 1. Then, for any positive continuous
function f(s) on [s0,+∞) with s0 ≥ 0 satisfying the inequality

(10.33) (s+ E)f(s) ≥ κ

∫ s

s−1

f(t)dt for large s ≥ s0 + 1

obeys the bound

f(s) > exp

(
−
∫ s

κ

ξ

(
t

κ

)
dt− c log(s+ e)

)
for s ≥ s0 with some constant c = c(f) ≥ 1.

Proof. We first prove a preliminary inequality. Take c ≥ 1 chosen later. In this
proof, implicit constants may depend on κ,E but should be independent of c. Let

ϕ(s) :=

∫ s

κ

ξ

(
t

κ

)
dt+ c log s
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for s ≥ κ. By taking the derivatives, we have

(10.34) ϕ′(s) = ξ

(
s

κ

)
+
c

s
and ϕ′′(s) =

1

κ
ξ′
(
s

κ

)
− c

s2

and so by Proposition 10.20, we have

(10.35)

ϕ′(s) = ξ

(
s

κ

)(
1 +O

(
c

s log s

))
= ξ

(
s

κ

)(
1 +O

(
1

s

))
ϕ′′(s) � 1

s


for s ≥ s1(c, κ)

By the mean value theorem, we then have

(10.36)

ϕ′(t) = ϕ′(s) +O

(
1

s

)
= ξ

(
s

κ

)
eO( 1

s ) for s− 1 ≤ t ≤ s with s ≥ s1(c, κ).

By (10.33), we have

(10.37)

f(s)eϕ(s) ≥ κeϕ(s)

s+ E

∫ s

s−1

f(t)eϕ(t) · e−ϕ(t)dt

≥ κeϕ(s)

s+ E

(∫ s

s−1

e−ϕ(t)dt

)
min

s−1≤t≤s
f(t)eϕ(t)

for s ≥ s0 + 1. For the last integral, by (10.36), we have

eϕ(s)
∫ s

s−1

e−ϕ(t)dt =
eϕ(s)

ξ( sκ )

(∫ s

s−1

e−ϕ(t)ϕ′(t)dt

)
eO( 1

s )

=
eϕ(s)−ϕ(s−1) − 1

ξ( sκ )
eO( 1

s ) for s ≥ s1(c, κ).

By Taylor approximation, (10.34) and (10.35), for some σ ∈ (s− 1, s), we have

ϕ(s)− ϕ(s− 1) = ϕ′(s) +
1

2
ϕ′′(σ)

= ξ

(
s

κ

)
+
c

s
+O

(
1

s

)
for s ≥ s1(c, κ).

Therefore, since

eξ(
s
κ )+ c

s ≥ eξ(
s
κ ) � s log s for s ≥ s1(c, κ),

by using the definition of ξ( sκ ), we have

eϕ(s)
∫ s

s−1

e−ϕ(t)dt =
eξ(

s
κ )+ c

s

ξ( sκ )
eO( 1

s )

=
eξ(

s
κ ) − 1

ξ( sκ )
e

c
s+O( 1

s )

=
s

κ
e

c
s+O( 1

s ) for s ≥ s1(c, κ).
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On inserting this estimate into (10.37), we have

f(s)eϕ(s) ≥ 1

1 + E
s

e
c
s+O( 1

s ) min
s−1≤t≤s

f(t)eϕ(t)

≥ e
c
s−

C
s min
s−1≤t≤s

f(t)eϕ(t) for s ≥ s1(c, κ, E, s0).

with some C = C(E, κ) ≥ 0. By taking

c := C + 1,

we arrive at

(10.38) f(s)eϕ(s) ≥ e
1
s min
s−1≤t≤s

f(t)eϕ(t) for s ≥ s1(κ,E, s0).

We refer the s1(κ,E, s0) in (10.38) as s1 below.
We now prove the assertion. Since log(s+ e) � log s for s ≥ e, it suffices to show

(10.39) f(s) > L exp

(
−
∫ s

κ

ξ

(
t

κ

)
dt− c log s

)
for s ≥ s1,

where

L := min
s1−1≤s≤s1

f(s)eϕ(s).

Indeed, for the original assertion with s ≥ s0, we can replace c by some larger value.
Assume that (10.39) does not hold. Then, there should be some s ≥ s1 with

f(s)eϕ(s) ≤ L.

By the continuity of f(s)eϕ(s), we can take smallest s̃ ≥ s1 with

f(s̃)eϕ(s̃) ≤ L.

By the minimality of s̃ and the definition of L, we have

f(s)eϕ(s) > L for s1 − 1 ≤ s ≤ s̃.

By (10.38), We then have

L ≥ f(s̃)eϕ(s̃) ≥ e
1
s̃ min
s̃−1≤t≤s̃

f(t)eϕ(t) ≥ e
1
s̃L,

which is a contradiction. Therefore, the assertion must be true. □

It is useful to prove an asymptotic estimate for the integral∫ s

κ

ξ

(
t

κ

)
dt

as given in the next proposition.

Proposition 10.23. For κ > 0 and s ≥ max(κ, ee), we have∫ s

κ

ξ

(
t

κ

)
dt = s log s+ s log log s− s log eκ+

s log log s

log s
+O

(
s

log s

)
,

where the implcit constant depends only on κ. Consequently, we have∫ s

κ

ξ

(
t

κ

)
dt ≥ s log s+ s log log s− s log eκ

for large s ≥ s0(κ).
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Proof. By changing variable via t = κu, we have∫ s

κ

ξ

(
t

κ

)
dt = κ

∫ s
κ

1

ξ(u)du = κ

∫ s
κ

e
e
ξ(u)du+O(1).

By using (i) of Proposition 10.20, we have∫ s

κ

ξ

(
t

κ

)
dt = κ

∫ s
κ

e
e

(
log u+ log log u+

log log u

log u

)
du

+O

(
1 + κ

∫ s
κ

e
e

(
log log u

log u

)2

du

)
.

Then, by using the formulas

κ

∫ s
κ

e
e
log udu = κ

(
s

κ
log

s

κ
− s

κ

)
+O(1)

= s log s− s log eκ+O(1),

κ

∫ s
κ

e
e
log log udu = κ

[
u log log u

] s
κ

e
e
− κ

∫ s
κ

e
e

du

log u

= s log log
s

κ
+O

(
s

log s

)
= s log log s+O

(
s

log s

)
,

κ

∫ s
κ

e
e

log log u

log u
du =

s log log s

log s
+O

(
s log log s

(log s)2
+

∫ s
κ

e
e

log log u

(log u)2
du

)
=
s log log s

log s
++O

(
s log log s

(log s)2

)
and∫ s

κ

e
e

(
log log u

log u

)2

du =

∫ e
e√
s

e
e

+

∫ s
κ

e
e√
s

�
√
s+

s(log log s)2

(log s)2
� s(log log s)2

(log s)2
,

we obtain the assertion. □

10.10. Dichotomy in the decay of solutions. We now consider the decay of
the solutions R(s) of the original delay-differential equation with the aid of the
standard solutions ra,b(s). As a result, we prove that one particular solution can
be distinguished from the others by checking the decay as s→ ∞.

Lemma 10.24. For R ∈ DDE(a, b, β) with β ≥ 1, if

〈R, ra,b〉(s) = 0

then, we have

R(s) � exp(−s log s− s log log s+ s log e|b|)
for s > max(ee, β), where the implicit constant depends on R, a, b.
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Proof. Note that if b = 0, then 〈R, ra,b〉(s) = 0 gives sra,b(s)R(s) = 0 and so
R(s) = 0 for s > β. By the assumption 〈R, r〉(β+1) = 0 and Lemma 10.1, we have

sra,b(s)R(s) = b

∫ s

s−1

ra,b(t+ 1)R(t)dt.

By the asymptotic formula

ra,b(s) = sa+b−1

(
1 +O

(
1

s

))
given as (10.15) of Proposition 10.6, we have

sa+b
(
1 +O

(
1

s

))
R(s) = b

∫ s

s−1

ta+b−1

(
1 +O

(
1

t

))
R(t)dt.

By taking the absolute value, we have

sa+b
(
1 +O

(
1

s

))
|R(s)| ≤ sa+b−1

(
1 +O

(
1

s

))
|b|
∫ s

s−1

|R(t)|dt

and so there is a constant E depending on a, b such that

(s− E)|R(s)| ≤ |b|
∫ s

s−1

|R(t)|dt for large s.

Then, the assertion follows by Lemma 10.21 and the latter half of Proposition 10.23.
□

Lemma 10.25. For real numbers a, b, β with β ≥ 1 and functions

R ∈ DDE(a, b, β),

assume that the follwing are satisfied:

(1) We have b > 0.
(2) For the standard solution r(s) := ra,b(s), we have

〈R, r〉(s) = 0.

(3) We have r(s) > 0 for s ≥ β.

When the initial conditions{
R(s) is not constantly zero on β − 1 < s < β

R(s) ≥ 0 for β − 1 < s < β

Then, we have

R(s) = exp

(
−s log s− s log log s+ s log eb+O

(
s log log 3s

log 2s

))
for s ≥ β, where the implicit constant depends on R.

Proof. By Lemma 10.15, we know that R(s) > 0 for s ≥ β. By the continuity, we
may assume s is sufficiently large. By (2), we have

sr(s)R(s) = b

∫ s

s−1

r(t+ 1)R(t)dt for s > β.

By Proposition 10.6 and the positivity of R(s), we have

(s+O(1))R(s) = b

∫ s

s−1

R(t)dt for s > β.
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Therefore, by Lemma 10.21 and Lemma 10.22, we have

R(s) = exp

(
−
∫ s

κ

ξ

(
t

κ

)
dt+O(log s)

)
.

Then, the assertion follows by Proposition 10.23. □

Lemma 10.26. For R ∈ DDE(a, b, β) with β ≥ 1, if

〈R, r〉(s) = C

then, we have

R(s) = s−(a+b)

(
C +O

(
1

s

))
for s > β where the implicit constant depends on R, a, b.

Proof. We prepare a preliminary estimate. By the assumption, we have

sra,b(s)R(s) = b

∫ s

s−1

ra,b(t+ 1)R(t)dt+ C for s > β.

By the asymptotic formula

ra,b(s) = sa+b−1

(
1 +O

(
1

s

))
given as (10.15) of Proposition 10.6, we have

sR(s) = b

∫ s

s−1

ra,b(t+ 1)

ra,b(s)
R(t)dt+ Cs−(a+b−1)

(
1 +O

(
1

s

))
and so

sa+bR(s)− C = b

∫ s

s−1

ra,b(t+ 1)

ra,b(s)
sa+b−1R(t)dt+O

(
1

s

)
By taking the absolute value, we have

|sa+bR(s)− C| � |b|
∫ s

s−1

ta+b|R(t)|dt
t
+

1

s

�
∫ s

s−1

|ta+bR(t)− C|dt
t
+

1

s

and so

(10.40) s|sa+bR(s)− C| ≤ L

(
s

∫ s

s−1

t|ta+bR(t)− C|dt
t2

+ 1

)
.

for s ≥ β + 1 with some constant L ≥ 1. We now prove the assertion. It suffices
to consider the range s ≥ 4L. Assume that the assertion does not hold. Then, we
have some s ≥ 4L such that

s|sa+bR(s)− C| ≥ AL with A := max

(
4, max
β≤s≤4L

s|sa+bR(s)− C|
)

≥ 1.

Take the smallest such s ≥ 4L, say s = s1. Then, by the minimality of s1,

s|sa+bR(s)− C| ≤ AL for β ≤ s ≤ s1.
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Thus, by (10.40), we have

AL ≤ s1|s
a+b
1 R(s1)− C| ≤ AL2s1

∫ s1

s1−1

dt

t2
+ L =

1

s1 − 1
AL2 + L

and since s ≥ 4L, we have

AL ≤ 1

2L
AL2 + L =

1

2
AL+ L ≤ 3

4
AL,

which is a contradiction. This completes the proof. □
10.11. Local behavior of solutions. In Lemma 10.26, we estimated the decay of
R ∈ DDE(a, bβ) with vanishing Iwaniec paring.

Lemma 10.27. For real numbers a, b and β ≥ 1 and functions

R ∈ DDE(a, b, β),

assume that the following holds:

(i) We have a, b > 0.
(ii) We have {

R(s) is not constantly zero

R(s) ≥ 0
for β − 1 < s < β

(iii) The Iwaniec pairing vanishes, i.e. 〈R, r〉(s) = 0 with r(s) := ra,b(s).
(iv) We have r(s) > 0 for s ≥ β.

We then have

sR(s) ≤ bR(s− 1)

(
1 +

(
1

s

))
for s ≥ β + 1,

where the implicit constant depends only on R.

Proof. By (i), (ii), (iii) and (iv), we can apply Lemma 10.15 to R(s) and conclude
that R(s) is positive, continuous and decreasing for s ≥ β. Thus, it suffices to
consider large s ≥ s0(R) ≥ β. Since 〈R, r〉(s) = 0,

sr(s)R(s) = b

∫ s

s−1

r(t+ 1)R(t)dt for s ≥ s0.

By Proposition 10.6, this gives

sR(s) = b

(∫ s

s−1

R(t)dt

)(
1 +

(
1

s

))
.

Since R(s) is decreasing for s ≥ β as checked above, we obtain the assertion. □

Lemma 10.28. For real numbers a, b and β ≥ 1 and functions

R ∈ DDE(a, b, β),

assume that the following holds:

(i) We have a, b > 0.
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(ii) We have {
R(s) is not constantly zero

R(s) ≥ 0
for β − 1 < s < β

(iii) The Iwaniec pairing vanishes, i.e. 〈R, r〉(s) = 0 with r(s) := ra,b(s).
(iv) We have r(s) > 0 for s ≥ β.

We have {
W+(s) := R(s)eϕ+(s) is increasing

W−(s) := R(s)eϕ−(s) is decreasing

for s ≥ β with some sufficiently large c± = c±(R) ≥ 1, where

ϕ±(s) :=

∫ s

b

ξ

(
t

b

)
dt± c±s.

Proof. Write

λ := a+ b > 0.

Note that Lemma 10.15 and the assumptions (i), (ii), (iii) and (iv) imply that
R(s) > 0 for s ≥ β. We first give some preliminary estimate. We shall use
s0 = s0(R) to assure various s-variables are large in the sense s ≥ s0. However, in
this proof, the implicit constants and the constant s0 may depend on R but should
be independent of c±. By Proposition 10.6, we have

(sr(s))′ = ar(s) + br(s+ 1) = sλ−1

(
λ+

(
1

s

))
r′(s) =

sr′(s)

s
=

(sr(s))′ − r(s)

s
= sλ−2

(
λ− 1 +

(
1

s

))
.

Therefore, we have

(10.41)

(log r(s+ 1))′ =
r′(s+ 1)

r(s+ 1)
=

(s+ 1)r′(s+ 1)

(s+ 1)r(s+ 1)

=
(a− 1)r(s+ 1) + br(s+ 2)

(s+ 1)r(s+ 1)
=
λ− 1

s
+O

(
1

s2

)
and

(log r(s+ 1))′′ =

(
(a− 1)r(s+ 1) + br(s+ 2)

sr(s+ 1)

)′

=

(
a− 1

s
+ b

r(s+ 2)

sr(s+ 1)

)′

= −a− 1

s2
+ b

sr′(s+ 2)r(s+ 1)− r(s+ 2)(sr(s+ 1))′

(sr(s+ 1))2

= −a− 1

s2
+ b

(λ− 1)s2λ−2 − λs2λ−2

s2λ
+O

(
1

s
· s

2λ−2

s2λ

)
= −λ− 1

s2
+O

(
1

s3

)
.



THE ROSSER–IWANIEC SIEVE 53

so

(10.42) (log r(s+ 1))′′ = −λ− 1

s2
+O

(
1

s3

)
.

For the derivatives of ϕ±(s), we just have

(10.43) ϕ′±(s) = ξ

(
s

b

)
± c± and ϕ′′±(s) =

1

b
ξ′
(
s

b

)
.

Since

(logR(s))′ =
R′(s)

R(s)
=
sR′(s)

sR(s)
= −aR(s) + bR(s− 1)

sR(s)
= −bR(s− 1)

sR(s)
− a

s
,

we have

(10.44) (logW±(s))
′ =

R′(s)

R(s)
+ ϕ′±(s) = −bR(s− 1)

sR(s)
+ ξ

(
s

λ

)
± c± − a

s
.

We now assume that s̃ = s̃± ≥ s0(R) ≥ β + 1 satisfies

(logW±(s̃))
′ = 0

(the value of s0(R) will be made large depending only on R) or, equivalently,

(10.45)
bR(s̃− 1)

s̃R(s̃)
= ξ

(
s̃

b

)
± c± − a

s̃
.

By Lemma 10.27, we have

(10.46) ξ

(
s̃

b

)
± c± ≥ 1 +O

(
1

s̃

)
.

Write

ψ±(t) := ϕ±(t)− log r(t+ 1).

Our next preliminary estimate is an approximation of the integral∫ s̃

s̃−1

r(t+ 1)e−ϕ±(t)dt =

∫ s̃

s̃−1

e−ψ±(t)dt.

By using (10.41), (10.43) and Taylor’s theorem, for s̃− 1 ≤ t ≤ s̃, we have

ψ′
±(t) = ξ

(
t

b

)
± c± − λ− 1

t
+O

(
1

s̃2

)
= ξ

(
s̃

b

)
± c± +

t− s̃

b
ξ′
(
s̃

b

)
+

(t− s̃)2

2b2
ξ′′
(
σ

b

)
− λ− 1

s̃
+O

(
1

s̃2

)
with some σ ∈ (s̃− 1, s̃) and and so by Proposition 10.20, we have

(10.47) ψ′
±(t) = ξ

(
s̃

b

)
± c± +

t− s̃− λ+ 1

s̃
+O

(
1

s̃ log s̃

)
.
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By using (10.46), we have

(10.48)

ξ

(
s̃

b

)
± c± +

t− s̃− λ+ 1

s̃
= ξ

(
s̃

b

)
± c± +O

(
1

s̃

)
=

(
ξ

(
s̃

b

)
± c±

)(
1 +O

(
1

s̃(ξ( s̃b )± c±)

))
=

(
ξ

(
s̃

b

)
± c±

)(
1 +O

(
1

s̃

))
� ξ

(
s̃

b

)
± c±

for s̃− 1 ≤ t ≤ s̃ since s̃ ≥ s0(R) and so we obtain

(10.49)

ψ′
±(t)

=

(
ξ

(
s̃

b

)
± c± +

t− s̃− λ+ 1

s̃

)(
1 +O

(
1

(s̃ log s̃)(ξ( s̃b )±
c±
s̃ )

))
for s̃− 1 ≤ t ≤ s̃. By (10.46) and (10.48), we also have

(10.50)

ψ′
±(t) =

(
ξ

(
s̃

b

)
± c± − λ

s̃

)(
1 +O

(
1

s̃(ξ( s̃b )±
c±
s̃ )

))
�
(
ξ

(
s̃

b

)
± c± − λ

s̃

)
�
(
ξ

(
s̃

b

)
± c±

)
> 0

for s̃− 1 ≤ t ≤ s̃ since s̃ ≥ s0(R). By (10.42), (10.43) and Proposition 10.20,

(10.51) ψ′′
±(s) =

1

b
ξ′
(
s

b

)
− (log r(s+ 1))′′ � 1

s
.

By Taylor’s theorem, we have

ψ±(t) = ψ±(s̃− 1) + (t− (s̃− 1))ψ′
±(s̃− 1) +

(t− (s̃− 1))2

2
ψ′′
±(σ)

for s̃− 1 ≤ t ≤ s̃ with some σ ∈ [s̃− 1, t]. Thus, by (10.47) and (10.51),

(10.52) ψ±(t) = ψ±(s̃− 1) + (t− (s̃− 1))

(
ξ

(
s̃

b

)
± c±

)
+O

(
1

s̃

)
for s̃− 1 ≤ t ≤ s̃. By integration by parts with noting (10.50), we thus have∫ s̃

s̃−1

e−ψ±(t)dt = −
∫ s̃

s̃−1

(e−ψ±(t))′
dt

ψ′
±(t)

=
e−ψ±(s̃−1)

ψ′
±(s̃− 1)

− e−ψ±(s̃)

ψ′
±(s̃)

−
∫ s̃

s̃−1

e−ψ±(t) ψ′′
±(t)

(ψ′
±(t))

2 dt.

By (10.48) and (10.49), we have

e−ψ±(s̃−1)

ψ′
±(s̃− 1)

=
e−ψ±(s̃−1)

ξ( s̃b )± c± − λ
s̃

(
1 +O

(
1

(s̃ log s̃)(ξ( s̃b )±
c±
s̃ )

))
.

By (10.46), (10.50) and (10.52), we have

e−ψ±(s̃)

ψ′
±(s̃)

=
e−ψ±(s̃−1)−ξ( s̃

b )∓c±+O( 1
s̃ )

ξ( s̃b )± c± − λ
s̃

.
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Also, by (10.48), (10.50), (10.51) and (10.52), we have∫ s̃

s̃−1

e−ψ±(t) ψ′′
±(t)

(ψ′
±(t))

2 dt�
e−ψ±(s̃−1)

s̃(ξ( s̃b )± c±)
2

∫ s̃

s̃−1

e−(t−(s̃−1))(ξ( s̃
b )±c±)dt

� e−ψ±(s̃−1)

s̃(ξ( s̃b )± c± − λ
s̃ )(ξ(

s̃
b )± c±)

2 .

By combining the above arguments, we have∫ s̃

s̃−1

e−ψ±(t)dt =
e−ψ±(s̃−1)

ξ( s̃b )± c± − λ
s̃

(
1− e−ξ(

s̃
b )∓c±+O( 1

s̃ ) + E(s̃)
)
.

with

E(s̃) � 1

(s̃ log s̃)(ξ( s̃b )± c±)
+

1

s̃(ξ( s̃b )± c±)
2 .

By the definition of ξ( s̃λ ) and (i) of Proposition 10.20, we have

e−ξ(
s̃
b )∓c± =

ξ( s̃b )

eξ(
s̃
b ) − 1

e∓c±+O( 1
s̃ )

ξ( s̃b )
=
b

s̃

e∓c±+O( 1
s̃ )

ξ( s̃b )
.

Therefore, we obtain

(10.53)

∫ s̃

s̃−1

e−ψ±(t)dt =
e−ψ±(s̃−1)

ξ( s̃b )± c± − λ
s̃

(
1− b

s̃

e∓c±+O( 1
s̃ )

ξ( s̃b )
+ E(s̃)

)
.

We now prove the assertion. We first consider W+(s). By (10.44), by taking c+
sufficiently large, we can make (logW+(s))

′ > 0 for β ≤ s ≤ s0 for sufficiently large
s0 = s0(R) ≥ β + 1. We assume to the contrary to the assertion that W+(s) is not

increasing. By the continuity of (logW+(s))
′, we can then take the least s̃ ≥ s0

with (logW+(s̃))
′ ≤ 0 and such chosen s̃ satisfies the condition (10.45). We then

have

W+(s) is increasing for β ≤ s ≤ s̃.

By (i), (iii) and (iv), we have

(10.54)

s̃r(s̃)R(s̃) = b

∫ s̃

s̃−1

r(t+ 1)R(t)dt

= b

∫ s̃

s̃−1

r(t+ 1)W+(t)e
−ϕ+(t)dt

≥ bW+(s̃− 1)

∫ s̃

s̃−1

e−ψ+(t)dt.

By using (10.53) and (10.54),

s̃r(s̃)R(s̃) ≥ bW+(s̃− 1)e−ψ+(s̃−1)

ξ( s̃b ) + c+ − λ
s̃

(
1− b

s̃

e−c++O( 1
s̃ )

ξ( s̃b )
+ E(s̃)

)

=
br(s̃)R(s̃− 1)

ξ( s̃b ) + c+ − λ
s̃

(
1− b

s̃

e−c++O( 1
s̃ )

ξ( s̃b )
+ E(s̃)

)
.
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By using (10.45) and (10.48), we then have

(10.55)

1 ≥
ξ( s̃b ) + c+ − a

s̃

ξ( s̃b ) + c+ − λ
s̃

(
1− b

s̃

e−c++O( 1
s̃ )

ξ( s̃b )
+ E(s̃)

)

=

(
1 +

b

s̃

1

ξ( s̃b ) + c+ − λ
s̃

)(
1− b

s̃

e−c++O( 1
s̃ )

ξ( s̃b )
+ E(s̃)

)

≥
(
1 +

b

s̃

1

ξ( s̃b ) + c+ − λ
s̃

)(
1− b

s̃

e−
c+
2

ξ( s̃b )
+ E(s̃)

)
since s̃ ≥ s0(R). With the choice of the sign ± = +, by Proposition 10.20, we have

E(s̃) � 1

(s̃ log s̃)(ξ( s̃b ) + c+)
+

1

s̃(ξ( s̃b ) + c+)
2 � 1

(s̃ log s̃)(ξ( s̃b ) + c+)
� 1.

Therefore, by (10.55), we have

1 ≥ 1 +
b

s̃

1

ξ( s̃b ) + c+ − λ
s̃

− b

s̃

e−
c+
2

ξ( s̃b )
+O

(
1

(s̃ log s̃)(ξ( s̃b ) + c+)

)

≥ 1 +
1

2

b

s̃

1

ξ( s̃b ) + c+ − λ
s̃

− b

s̃

e−
c+
2

ξ( s̃b )

since s̃ ≥ s0(R). For c+ ≥ 48, since

e−
c+
2 =

1

e
c+
2

≤ 8

c2+
≤ 16

c+

1

1 + c+
≤ 16

c+

1

1 + 1
ξ( s̃

b )
(c+ − λ

s̃ )
≤ 1

3

1

1 + 1
ξ( s̃

b )
(c+ − λ

s̃ )

and s0 ≥ s0(R), we then have

1 ≥ 1 +
1

2

b

s̃

1

ξ( s̃b ) + c+ − λ
s̃

− 1

3

b

s̃

1

ξ( s̃b ) + c+ − λ
s̃

≥ 1 +
1

6

b

s̃

1

ξ( s̃b ) + c+ − λ
s̃

,

which is a contradiction. Thus, the assertion holds for W+(s).
We next consider W−(s). By (10.44), by taking c− sufficiently large, we can

make (logW−(s))
′ < 0 for β ≤ s ≤ s0 for sufficiently large s0 = s0(R). We assume

to the contrary to the assertion that W−(s) is not decreasing. By the continuity

of (logW−(s))
′, we can then take the least s̃ ≥ s0 with (logW (s̃))′ ≥ 0 and such

chosen s̃ satisfies the condition (10.45). We then have

W−(s) is decreasing for β ≤ s ≤ s̃.

By (i), (iii) and (iv), we have, we have

s̃r(s̃)R(s̃) = b

∫ s̃

s̃−1

r(t+ 1)R(t)dt

= b

∫ s̃

s̃−1

r(t+ 1)W−(t)e
−ϕ−(t)dt

≤ bW−(s̃− 1)

∫ s̃

s̃−1

eψ−(t)dt.
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By using (10.53), we then have

s̃r(s̃)R(s̃) ≤ bW−(s̃− 1)e−ψ−(s̃−1)

ξ( s̃b )− c− − λ
s̃

(
1− b

s̃

e+c−+O( 1
s̃ )

ξ( s̃b )
+ E(s̃)

)

=
br(s̃)R(s̃− 1)

ξ( s̃b )− c− − λ
s̃

(
1− b

s̃

e+c−+O( 1
s̃ )

ξ( s̃b )
+ E(s̃)

)
.

By using (10.45), we then have

(10.56)

1 ≤
ξ( s̃b )− c− − a

s̃

ξ( s̃b )− c− − λ
s̃

(
1− b

s̃

e+c−+O( 1
s̃ )

ξ( s̃b )
+ E(s̃)

)

=

(
1 +

b

s̃

1

ξ( s̃b )− c− − λ
s̃

)(
1− b

s̃

e+c−+O( 1
s̃ )

ξ( s̃b )
+ E(s̃)

)

≤
(
1 +

b

s̃

1

ξ( s̃b )− c− − λ
s̃

)(
1− b

s̃

e+
c−
2

ξ( s̃b )
+ E(s̃)

)
.

With the choice of the sign ± = −, by Proposition 10.20 and (10.46), we have

E(s̃) � 1

(s̃ log s̃)(ξ( s̃b )− c−)
+

1

s̃(ξ( s̃b )− c−)
2 � 1

s̃(ξ( s̃b )− c−)
2 � 1.

Therefore, by (10.56), we have

1 ≤ 1 +
b

s̃

1

ξ( s̃b )− c− − λ
s̃

− b

s̃

e+
c−
2

ξ( s̃b )
+O

(
1

s̃(ξ( s̃b )− c−)
2

)
.

By (10.46), we have

ξ

(
s̃

b

)
≥ c− +

1

2
and

λ

s̃
≤ 1

3
for s̃ ≥ s0(R)

and so by taking c− ≥ 1152 and using

1

4
e

c−
4 ≥ 1

4
· 1
2

(
c−
4

)2

≥ 9c− ≥ 3 + 6c−,

we have

1

ξ( s̃b )− c−
≤ 1

ξ( s̃b )− c− − λ
s̃

≤ 1

ξ( s̃b )

1

1− c−+ 1
3

ξ( s̃
λ )

≤ 1

ξ( s̃b )

1

1− c−+ 1
3

c−+ 1
2

=
3 + 6c−

ξ( s̃b )
≤ 1

4

e
c−
4

ξ( s̃b )
for s̃ ≥ s0(R).

Therefore, by Proposition 10.20, we have

1 ≤ 1 +
1

4

b

s̃

e
c−
2

ξ( s̃b )
− 1

2

b

s̃

e
c−
2

ξ( s̃b )
+O

(
e

c−
2

s̃ξ( s̃b )
2

)

≤ 1− 1

4

b

s̃

e
c−
2

ξ( s̃b )
+O

(
e

c−
2

(s̃ log s̃)ξ( s̃b )

)
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≤ 1− 1

8

λ

s̃

e
c−
2

ξ( s̃b )

since s̃ ≥ s0(R). This is a contradiction. This completes the proof. □

Lemma 10.29. For real numbers a, b and β ≥ 1 and functions

R ∈ DDE(a, b, β),

assume that the following holds:

(i) We have a, b > 0.
(ii) We have {

R(s) is not constantly zero

R(s) ≥ 0
for β − 1 < s < β

(iii) The Iwaniec pairing vanishes, i.e. 〈R, r〉(s) = 0 with r(s) := ra,b(s).
(iv) We have r(s) > 0 for s ≥ β.

Then, we have

R(s− 1) =
1

b
R(s)(s log es) exp

(
O

(
log log 3s

log 2s

))
for s ≥ β + 1,

where the implicit constant depends only on R.

Proof. Note that Lemma 10.15 and the assumptions (i), (ii), (iii) and (iv) imply
that R(s) > 0 for s ≥ β. Thus, by the continuity of R(s), we may assume that s is
sufficiently large, say s ≥ s0(R).

We use Lemma 10.28. Under the notation of Lemma 10.28, we have

(logW+(s))
′ ≥ 0 and (logW−(s))

′ ≤ 0 for large s.

By (10.44) in the proof of Lemma 10.28, this implies

bR(s− 1)

sR(s)
= ξ

(
s

b

)
+O(1).

By Proposition 10.20, this further implies that

bR(s− 1)

sR(s)
= (log es)

(
1 +O

(
log log s

log s

))
and so the assertion follows for large s. □

11. Convergence problem

In this section, we discuss the convergence of the series

T±(s) :=
∑
n≥1

n≡ν± (mod 2)

fn(s)

defined in (9.5). We assume

κ > 0

throughout this section.
We first show that the convergence of the series T±(s) in the appropriate range

s ∈ I± is independent of the variable s and solely depends on β.
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Lemma 11.1. For any s0 ∈ I±, the following are equivalent:

(i) The series T+(s0) or the series T−(s0) converge.

(ii) Both of the series T±(s) converge for any s ∈ I±.

Proof. The implication (ii) =⇒ (i) is obvious and so it suffices to prove the reversed

implication (i) =⇒ (ii). Assume that the series T±(s0) converges with s0 ∈ I±. By
Proposition 9.2, for any positive integer N , we have

sκ0T
±(s0) ≥ sκ0

∑
2≤n≤N

n≡ν± (mod 2)

fn(s0)

≥
∫ ∞

max(s0,β+ε±)

∑
2≤n≤N

n≡ν± (mod 2)

fn−1(t− 1)dtκ

=

∫ ∞

max(s0,β+ε±)

∑
1≤n≤N−1

n≡ν∓ (mod 2)

fn(t− 1)dtκ

By taking the limit N → ∞ with the monotone convergence theorem, we have∫ ∞

max(s0,β+ε±)

T∓(t− 1)dtκ ≤ sκ0T
±(s0) < +∞.

We thus have the convergence of T∓(s) for

s > max(s0, β + ε±)− 1 = max(s0 − 1, β − ε∓)

By the induction, we find that T∓(s) is convergent for

s > max(s0 − n, β − ε±)

for any n ∈ N and so for s > β − ε±. What remains is the convergence of T−(β).
By Proposition 9.2, for any positive integer N , we have

βκ
∑

2≤n≤N
n≡ν− (mod 2)

fn(β)− (β + 1)κ
∑

2≤n≤N
n≡ν− (mod 2)

fn(β + 1)

=

∫ β+1

β

∑
2≤n≤N

n≡ν− (mod 2)

fn−1(t− 1)dtκ =

∫ β+1

β

∑
1≤n≤N−1

n≡ν+ (mod 2)

fn(t− 1)dtκ.

However, since fn(s) is constant on β − 1 < s ≤ β + 1 for odd n, we have

βκ
∑

2≤n≤N
n≡ν− (mod 2)

fn(β)

≤ (β + 1)κ
∑

1≤n≤N−1
n≡ν+ (mod 2)

fn(β) + (β + 1)κ
∑

2≤n≤N
n≡ν− (mod 2)

fn(β + 1)

≤ (β + 1)κT+(β) + (β + 1)κT−(β + 1)

and so
0 ≤ βκT−(β) ≤ (β + 1)κT+(β) + (β + 1)κT−(β + 1) < +∞.

Thus, T−(s) converges even at s = β. This completes the proof. □
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In order to describe the range of β for which T±(s) converges, we introduce some
auxiliary functions and parameters. We use two standard solutions

p(s) = pκ(s) := rκ,−κ(s) and q(s) = qκ(s) := rκ,+κ(s).

Recall that their defining equations are

(11.1)

{
(sp(s))′ = κp(s)− κp(s+ 1)

(sq(s))′ = κq(s) + κq(s+ 1).

We may rewrite these equations as{
sp′(s) = (κ− 1)p(s)− κp(s+ 1)

sq′(s) = (κ− 1)q(s) + κq(s+ 1).

or

(11.2)

{
(s1−κp(s))′ = −κs−κp(s+ 1)

(s1−κq(s))′ = +κs−κq(s+ 1).

The function p(s) is positive for s > 0 while the function q(s) may have zeros.
Thus, let ρ be the largest zero

ρ = ρκ := sup{s ∈ (0,+∞) | qκ(s) = 0},
where we use a convention ρκ = 0 if qκ(s) has no zero.

We prepare one observation:

Proposition 11.2. For s ∈ (ρ−1, ρ)∩(0,+∞), we have q(s) < 0. Consequently,
if there is the second largest zero ρ1 of q(s), then we have ρ1 ≤ ρ− 1.

Proof. When κ ≤ 1
2 , by Proposition 10.14, q(s) has no zero and so ρ = 0 and the

assertion is vacuous. We thus can assume κ > 1
2 and so by Proposition 10.14, ρ is

a genuine zero of q(s). By (11.1) with s = ρ, we have

ρq′(ρ) = (κ− 1)q(ρ) + κq(ρ+ 1) = κq(ρ+ 1) > 0

since q(ρ + 1) > 0 by the maximality of ρ and Proposition 10.6. Thus, q(s) is
negative for s slightly smaller than ρ. Assume to the contrary to the assertion that
q(s) has a zero in (ρ− 1, ρ) ∩ (0,+∞). Since q(s) is negative for s slightly smaller
than ρ, we can take the second largest zero ρ1 of q(s) with ρ1 ∈ (ρ− 1, ρ) and then
q(s) < 0 for s ∈ (ρ1, ρ). By (11.1) with s = ρ1, we then have

ρ1q
′(ρ1) = (κ− 1)q(ρ1) + κq(ρ1 + 1) = κq(ρ1 + 1) > 0

since ρ1 + 1 > ρ and so the maximality of ρ gives q(ρ1 + 1) > 0. However, this
implies q(s) is positive for s slightly larger than ρ1. This is a contradiction. □

We further consider the function

D(s) = Dκ(s) := (s− 1)1−κpκ(s− 1)qκ(s) + (s− 1)1−κqκ(s− 1)pκ(s)

defined on (1,+∞). When κ ≤ 1
2 , this function D(s) can be defined even for

[1,+∞) i.e. even at s = 1 by its limit value from right

(11.3) D(1) := lim
σ↘1

(
(s− 1)1−κpκ(s− 1)qκ(s) + (s− 1)1−κqκ(s− 1)pκ(s)

)
.

Indeed, by Proposition 10.10, we have

(σ − 1)1−κpκ(σ − 1) = (σ − 1)1−κrκ,−κ(σ − 1) → e−κγΓ(1− κ) as σ ↘ 1
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and so it suffices to consider u(σ − 1). When κ = 1
2 , by Proposition 10.8, we have

(σ − 1)1−κqκ(σ − 1) = (σ − 1)1−κrκ,κ(σ − 1) = (σ − 1)1−κ → 0 as σ ↘ 1.

When κ < 1
2 and so 2κ < 1, by Proposition 10.10, we have

(σ − 1)1−κqκ(σ − 1) = (σ − 1)1−κrκ,κ(σ − 1) → eκγΓ(1− κ)

Γ(1− 2κ)
as σ ↘ 1.

By combining the above observations, we conclude that (11.3) exists. Based on this
observation, for simplicity, we use the abbreviations like

(β − 1)1−κpκ(β − 1) = lim
s↘β

(σ − 1)1−κpκ(σ − 1),

(β − 1)1−κqκ(β − 1) = lim
s↘β

(σ − 1)1−κqκ(σ − 1).

In this way, we consider D(s) as a function on the interval

J = J(κ) :=

{
(1,+∞) if κ > 1

2 ,

[1,+∞) if κ ≤ 1
2 .

The non-vanishing of D(s) is as important as ρ in our convergence problem. We
thus check that D(s) has at most one zero in (ρ,+∞).

Lemma 11.3. For s > ρ, we have(
q(s)

p(s)

)′

> 0.

Consequently, the function
q(s)

p(s)

is strictly increasing for s ≥ ρ.

Proof. Follows by Lemma 10.16 since p(s) = rκ,−κ(s) and q(s) = rκ,+κ(s). □

Proposition 11.4. The function

D(s)

p(s)

is strictly increasing for s ∈ J ∩ (ρ,+∞).

Proof. We have

D(s)

p(s)
= (s− 1)1−κp(s− 1)

q(s)

p(s)
+ (s− 1)1−κq(s− 1).

By (11.2), we have

d

ds

(
D(s)

p(s)

)
= −κ(s− 1)−κp(s)

q(s)

p(s)
+ (s− 1)1−κp(s− 1)

(
q(s)

p(s)

)′

+ κ(s− 1)−κq(s)

= (s− 1)1−κp(s− 1)

(
q(s)

p(s)

)′

> 0
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for s ∈ J ∩ (ρ,+∞) by Lemma 11.3. This completes the proof. □

We then define ρ̃ to be the unique zero of D(s) in J ∩ (ρ,+∞) if such zero exists
and ρ̃ := max(ρ, 1) if otherwise. By Proposition 11.4 and

D(s) ∼ 2sκ−1 as s→ ∞

follows by (10.16), we find that

D(s) > 0 ⇐⇒ s > ρ̃

provided s ∈ J ∩ (ρ,+∞).

Proposition 11.5. We have ρ ≤ ρ̃ ≤ ρ+ 1.

Proof. The inequality ρ̃ ≤ ρ+ 1 immediately follows since if s > ρ+ 1, then

p(s), q(s), p(s− 1), q(s− 1) > 0, and so D(s) > 0.

Also, ρ ≤ ρ̃ follows by definition. This completes the proof. □

The following two results are mentioned without detailed proof in Kai-Man
Tsang’s paper.

Proposition 11.6. If the series T±(s) converges for s ∈ I±, then β > ρ̃.

Proof. Assume that the series T±(s) converges for s ∈ I±. We then should have

the properties of T±(s) proven in Proposition 9.4 and Proposition 9.4. We further
use the functions P (s), Q(s) defined by{

P (s) := T+(s)− T−(s) + 2

Q(s) := T+(s) + T−(s)
for s ≥ β

and

sκP (s) = sκQ(s) = A for β − 1 < s < β

as in (10.2) and (10.5). We then have
sκP (s) = A+B +A

∫ s

β

dtκ

(t− 1)κ

sκQ(s) = A−B −A

∫ s

β

dtκ

(t− 1)κ

for β ≤ s ≤ β + 1

and {
sP ′(s) = −κP (s) + κP (s− 1)

sQ′(s) = −κQ(s)− κQ(s− 1)
for s ∈ (β, β + 1) ∪ (β + 1,+∞)

as seen in (10.4) and (10.6), where A,B are given by the equations

A = (β + 1)κT+(β + 1) + (β + 1)κ,

βκT−(β) = βκ −B
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as in Proposition 9.4. Therefore, p(s), q(s) are the adjoint solutions of P (s), Q(s),
respectively. By Lemma 10.1, we may write

CP := 〈P, p〉(s) = sp(s)P (s) + κ

∫ s

s−1

p(t+ 1)P (t)dt,

CQ := 〈Q, q〉(s) = sq(s)Q(s)− κ

∫ s

s−1

q(t+ 1)Q(t)dt

for s > β. We then prove

CP = 2 and CQ ≥ 0.

By (v) of Proposition 9.4, we have P (s) → 2 as s→ ∞. By Lemma 10.26, we have
P (s) ∼ CP as s → ∞ and so CP = 2. By (ii) of Proposition 9.4, Q(s) is positive
for s ≥ β. Also, by definition, A should be positive and so by the definition of the
extension of Q(s), we find that Q(s) is positive for s > β−1. Thus, by Lemma 10.26,
we should have CQ ≥ 0 since otherwise Q(s) is negative for large s.

We first prove that β > ρ. Assume to the contrary that ρ ≥ β. In this case, we
have ρ 6= 0 and so ρ is a genuine zero of q(s). For s > ρ,

0 ≤ CQ = sq(s)Q(s)− κ

∫ s

s−1

q(t+ 1)Q(t)dt

and so

κ

∫ ρ

ρ− 1
2

q(t+ 1)Q(t)dt ≤ κ

∫ s

s−1

q(t+ 1)Q(t)dt ≤ sq(s)Q(s)

for ρ < s ≤ ρ+ 1
2 . Since q(ρ) = 0, by taking the limit s↘ ρ, we find that

κ

∫ ρ

ρ− 1
2

q(t+ 1)Q(t)dt ≤ 0

However, by the maximality of ρ, we have q(t + 1) > 0 in the above integral and
also Q(t) > 0 in the same integral as seen above. This implies

0 < κ

∫ s

s−1

q(t+ 1)Q(t)dt ≤ sq(s)Q(s),

which is a contradiction. Therefore, we should have β > ρ.

We now prove β > ρ̃. By the previous paragraph, we may assume β > ρ and so,
by the maximality of ρ, we have q(s) > 0 for s ≥ β. By Lemma 10.2 and

P (s) =
A

sκ
for β − 1 < s < β,

we have

2 = CP = βp(β)(P (β)−Aβ−κ) +A(β − 1)1−κp(β − 1).

By the formula

sκP (s) = A+B +A

∫ s

β

dtκ

(t− 1)κ
for β ≤ s ≤ β + 1,

we may rewrite the above formula as

2 = CP = β1−κp(β)B +A(β − 1)1−κp(β − 1).
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Therefore, we have

(11.4) B =
βκ−1

p(β)

(
2−A(β − 1)1−κp(β − 1)

)
.

(Note that p(β) 6= 0.) By Lemma 10.2, we have

0 ≤ CQ = βq(β)(Q(β)−Aβ−κ) +A(β − 1)1−κq(β − 1).

Using the formula

sκQ(s) = A−B −A

∫ s

β

dtκ

(t− 1)κ
for β ≤ s ≤ β + 1,

we then have

0 ≤ CQ = −β1−κq(β)B +A(β − 1)1−κq(β − 1).

By substituting (11.4), we obtain

0 ≤ −q(β)
p(β)

(
2−A(β − 1)1−κp(β − 1)

)
+A(β − 1)1−κq(β − 1)

and so

2
q(β)

p(β)
≤ A

(
q(β)

p(β)
(β − 1)1−κp(β − 1) + (β − 1)1−κq(β − 1)

)
= A

(β − 1)1−κp(β − 1)q(β) + (β − 1)1−κq(β − 1)p(β)

p(β)
= A

D(β)

p(β)
.

Since β > ρ, this gives

D(β) ≥ 2

A
q(β) > 0

which implies β > ρ̃ since β ∈ J . This completes the proof. □

Lemma 11.7. For t ≥ ρ, the function

s 7→ s1−κp(s)q(t) + s1−κq(s)p(t)

is strictly increasing for s ∈ (0,+∞) ∩ [t− 1,+∞).

Proof. By (11.2), we have

(s1−κp(s)q(t) + s1−κq(s)p(t))′ = κs−κ
(
q(s+ 1)p(t)− p(s+ 1)q(s)

)
.

By Lemma 11.3, we have

q(s+ 1)p(t)− p(s+ 1)q(s) = p(t)p(s+ 1)

(
q(s+ 1)

p(s+ 1)
− q(t)

p(t)

)
> 0

for s+ 1 > t ≥ ρ. Thus, we obtain the lemma. □

Proposition 11.8. Assume that κ > 0 and β ∈ J satisfies β > ρ̃. Then, the
series T±(s) are convergent for s ∈ I± and also we have

(i) We have

|P (s)− 2|, Q(s), T±(s) � exp(−s log s− s log log s+ s log eκ)

for s ≥ max(ee, β), where the implicit constant depends only on κ, β.
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(ii) We have 
A =

2q(β)

D(β)
> 0,

B =
2(β − 1)1−κq(β − 1)

β1−κD(β)
.

for the constants A,B given in Proposition 9.4. Also, we have

A > (β + 1)κ.

(iii) For the Iwaniec pairing, we have

〈P, p〉(s) = 2 and 〈Q, q〉(s) = 0 for s ≥ β.

(iv) We have

T±(s) � Q(s) > 0 for s ≥ β

and
0 ≤ T±(s) ≤ Q(s) for s ∈ I±,

where the implicit constant depends only on κ and β.

Proof. We prepare the auxiliary constants and functions

Ã, B̃, T̃±(s), P̃ (s), Q̃(s),

which are turned out to coincide with the original constants and functions

A, B, T±(s), P (s), Q(s).

We let 
Ã :=

2q(β)

D(β)
,

B̃ :=

(
β − 1

β

)1−κ
2q(β − 1)

D(β)
,

which are well-defined since p(β), D(β) > 0 by the assumption β > ρ̃. By tracing

the definition of T±(s), we define the continuous functions T̃±(s) for s ∈ I± by the
initial conditions

(11.5)

 sκT̃+(s) := Ã− sκ for β − 1 < s ≤ β + 1,

βκT̃−(β) := βκ − B̃

and the delay–differential equation

(11.6) (sκT̃±(s))′ = −κsκ−1T̃∓(s− 1) for s > β + ε±.

We then define Ũ(s), Ṽ (s) by{
P̃ (s) := T̃+(s)− T̃−(s) + 2

Q̃(s) := T̃+(s) + T̃−(s)
for s ≥ β

and

sκP̃ (s) = sκQ̃(s) = Ã for β − 1 < s < β.
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By arguing similarly to the proof of Proposition 11.6, we have{
〈P̃ , p〉(s) = +β1−κp(β)B̃ + Ã(β − 1)1−κp(β − 1)

〈Q̃, q〉(s) = −β1−κq(β)B̃ + Ã(β − 1)1−κq(β − 1).

By substituting our choice of Ã, B̃, we get

〈P̃ , p〉(s) = 2(β − 1)1−κq(β − 1)p(β)

D(β)
+

2(β − 1)1−κp(β − 1)q(β)

D(β)
= 2

and

〈Q̃, q〉(s) = −2(β − 1)1−κq(β − 1)q(β)

D(β)
+

2(β − 1)1−κq(β − 1)q(β)

D(β)
= 0

so that

(11.7) 〈P̃ , p〉(s) = 2 and 〈Q̃, q〉(s) = 0 for s ≥ β.

Since the adjoint equation (11.1) gives

sp(s) = −κ
∫ s

s−1

p(t+ 1)dt+ (constant) for s ≥ β

and then Proposition 10.6 shows

sp(s) = −κ
∫ s

s−1

p(t+ 1)dt+ 1 for s ≥ β

Thus, we can rewrite (11.7) as

(11.8) 〈P̃ − 2, p〉(s) = 〈Q̃, q〉(s) = 0 for s ≥ β.

We next prove the following claim.

Claim 11.9.

(a) We have

|P̃ (s)− 2| < Q̃(s) for s > β − 1.

Moreover, there exists a real number η = η(κ, β) ∈ (0, 1) such that

|P̃ (s)− 2| ≤ ηQ̃(s) for s ≥ β.

Consequently, T̃±(s) > 0 for s ∈ I±.
(b) We have

|P̃ (s)− 2|, Q̃(s), T̃±(s) � exp(−s log s− s log log s+ s log eκ)

for s > max(ee, β).
(c) We have

sκT̃±(s) =

∫ ∞

s

T̃∓(t− 1)dtκ for s ≥ β + ε±.

Proof.

(a) The positivity of T̃±(s) follows from |P̃ (s)− 2| < Q̃(s) since then

T̃±(s) =
1

2

(
±(P̃ (s)− 2) + Q̃(s)

)
≥ 1

2
(Q̃(s)− |P̃ (s)− 2|) > 0.
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Thus, we prove |P̃ (s)− 2| < Q̃(s) for s > β− 1 and there exists η ∈ (0, 1) such that

|P̃ (s)− 2| ≤ ηQ̃(s) for s ≥ β. We want to use Lemma 10.17 with

a = b = κ, R−(s) = P̃ (s)− 2, R+(s) = Q̃(s).

To this end, we need to check |P̃ (s)− 2| < Q̃(s) for β − 1 < s < β. Clearly,

P̃ (s)− 2 =
Ã

sκ
− 2 <

Ã

sκ
= Q̃(s) for β − 1 < s < β.

We thus prove the inequality

−(P̃ (s)− 2) < Q̃(s) ⇐⇒ sκ < Ã

for β − 1 < s < β. It suffices to show

(11.9) Ã =
2q(β)

D(β)
> βκ.

For s > β, by using Lemma 11.7 with t = s, we have

D(s) = (s− 1)1−κp(s− 1)q(s) + (s− 1)1−κq(s− 1)p(s)

≤ 2s1−κp(s)q(s).

By taking the limit s↘ β, we obtain

D(β) ≤ 2β1−κp(β)q(β).

Therefore, we have

Ã =
2q(β)

D(β)
≥ βκ

βp(β)
.

By using the bound

p(s) =

∫ ∞

0

e−sx−κEin(x)dx <

∫ ∞

0

e−sxdx =
1

s
,

we obtain (11.9). This proves |P̃ (s) − 2| < Q̃(s) for β − 1 < s < β. Then, (a)
follows by Lemma 10.17 with recalling (11.8).

(b) By Lemma 10.24 and (11.8), the assertion immediately follows for |P̃ (s) − 2|
and Q̃(s). For T̃±(s), we can use

T̃±(s) =
1

2

(
±(P̃ (s)− 2) + Q̃(s)

)
.

This proves (b) of the claim.

(c) By the delay-differential equation (11.6) defining T̃±(s), we have

sκT̃±(s)− σκT̃±(σ) =

∫ σ

s

T∓(t− 1)dtκ for β + ε± ≤ s ≤ σ.

By taking the limit σ → ∞ with (b), we obtain (c) of the claim. □

We now prove the convergence of T±(s). We consider the partial sum

TN (s) :=
∑

1≤n≤N
n≡N (mod 2)

fn(s)
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as defined in (9.6). Note that by (ii) and (iii) of Proposition 9.3, we have

(11.10) sκTN (s) =

∫ ∞

s

TN−1(t− 1)dtκ for s > β + εN .

Since the terms of TN (s) are positive and (b) of Claim holds, it suffices to prove

(11.11)

{
0 ≤ sκTN (s) ≤ sκT̃+(s) for s ∈ I+ and odd N ≥ 1,

0 ≤ sκTN (s) ≤ sκT̃−(s) for s ∈ I− and even N ≥ 1.

We use induction on N .

Initial case N = 1. By the initial condition (11.5) and (a) of Claim, we have

0 < (β + 1)κT̃+(β + 1) = Ã− (β + 1)κ and so Ã > (β + 1)κ.

Thus, we have

0 ≤ sκT1(s) = (β + 1)κ − sκ < Ã− sκ = sκT̃+(s) for β − 1 < s ≤ β + 1.

Since T1(s) = 0 for s ≥ β+1, by the positivity of T̃+(s), the same inequality holds
even for s ≥ β + 1. This proves (11.11) for the initial case N = 1.

Induction step from N − 1 to N with even N ≥ 1. Assume that N ≥ 1 is even and
(11.11) holds for N − 1. By (11.10) and the induction hypothesis, we have

sκTN (s) =

∫ ∞

s

TN−1(t− 1)dtκ ≤
∫ ∞

s

T̃+(t− 1)dtκ for s > β

since t− 1 ≥ s− 1 > β − 1 in the integral. By (c) of Claim, we have

0 ≤ sκTN (s) ≤ sκT̃−(s) for s > β.

By taking the limit, we can see this inequality holds even at s = β. Thus, (11.11)
holds for the N -th case as well.

Induction step from N − 1 to N with odd N ≥ 1. Assume that N ≥ 1 is odd and
(11.11) holds for N − 1. We first consider the range s ≥ β + 1. By (11.10) and the
induction hypothesis, we have

sκTN (s) =

∫ ∞

s

TN−1(t− 1)dtκ ≤
∫ ∞

s

T̃−(t− 1)dtκ for s ≥ β + 1

since t− 1 ≥ s− 1 ≥ β in the integral. By (c) of Claim, we have

0 ≤ sκTN (s) ≤ sκT̃+(s) for s ≥ β + 1.

We next consider the range β − 1 < s ≤ β + 1. By (iv) of Proposition 9.3, we have

sκTN (s) = (β + 1)κTN (β + 1) + (β + 1)κ − sκ for β − 1 < s ≤ β + 1.

Since we have already shown (11.11) for the current N and s = β + 1, we have

sκTN (s) ≤ (β + 1)κT̃+(β + 1) + (β + 1)κ − sκ for β − 1 < s ≤ β + 1.

By the initial condition (11.5) of T̃+(s), we have

sκTN (s) ≤ Ã− (β + 1)κ + (β + 1)κ − sκ

= Ã− sκ = sκT̃+(s) for β − 1 < s ≤ β + 1.

This completes the proof of (11.11) for the N -th case and so proves the convergence

of T±(s).
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Finally, we prove (i), (ii), (iii) and (iv). By (11.11) and (b) of Claim, we have

0 ≤ T±(s) ≤ T̃±(s) ≤ Q̃(s) for s ≥ β

and so

T±(s) � exp(−s log s− s log log s+ s log eκ) for s > max(ee, β).

Therefore, we should have

|P (s)− 2|, Q(s) � exp(−s log s− s log log s+ s log eκ)

for s > max(ee, β). Thus, (i) follows. By Lemma 10.26, we should have (iii), i.e.

〈P, p〉(s) = 2 and 〈Q, q〉(s) = 0 for s > β.

By arguing similarly to the proof of Proposition 11.6, we can see

2 = 〈P, p〉(s) = +β1−κp(β)B +A lim
σ↘β

p(σ − 1)(σ − 1)1−κ,

0 = 〈Q, q〉(s) = −β1−κq(β)B +A lim
σ↘β

q(σ − 1)(σ − 1)1−κ.

By solving this system of equations, we obtain the first assertions of (ii) and so

A = Ã, B = B̃, P (s) = P̃ (s), Q(s) = Q̃(s).

The inequality A > (β + 1)κ can be derived by the positivity of T+(s) as

0 < (β + 1)κT+(β + 1) = A− (β + 1)κ

This completes the proof of (ii). Then, for s ≥ β, (a) of Claim implies

T±(s) ≤ Q(s) =
1

1− η
(Q(s)− ηQ(s))

≤ 1

1− η
(Q(s)± |P (s)− 2|) = 2

1− η
T±(s)

and
Q(s) > 0 for s ≥ β

and so (iv) follows provided s ≥ β. When β − 1 < s < β and ± = +, we have

T+(s) =
A

sκ
− 1 ≤ A

sκ
= Q(s)

and so (iv) holds even for β − 1 < s < β. This completes the proof. □

Lemma 11.10. For s ≥ β > ρ̃ with β ∈ J , we have the following :

(i) For s ≥ β, we have

T±(s) � exp(−s log s− s log log 3s+ s log eκ)

and

T±(s) = exp

(
−s log s− s log log 3s+ s log eκ+O

(
s log log 3s

log 2s

))
,

where the implicit constant depends only on κ and β.
(ii) For s ≥ β + 1, we have

T±(s− 1), T∓(s− 1) � T±(s)(s log es),

where the implicit constant depends only on κ and β.
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Proof. By (iv) of Proposition 11.8, it suffices to prove the assertion for Q(s), i.e.

Q(s) � exp(−s log s− s log log 3s+ s log eκ),

Q(s) = exp

(
−s log s− s log log 3s+ s log eκ+O

(
s log log 3s

log 2s

))
and

Q(s− 1) � Q(s)(s log es).

Recall that 〈Q, q〉(s) = 0 as in the proof of Proposition 11.8. Also, by (10.5), (ii) of
Proposition 11.8 and β > ρ̃, we have Q(s) > 0 for β−1 < s < β. By Lemma 10.24,
Lemma 10.25 and Lemma 10.29, we thus obtain the result. □

12. Optimal choice of β

Proposition 12.1. For κ > 1
2 and β > ρ̃, by Proposition 11.8, we can consider

γ(β) := sup{s ∈ [β,+∞) | F−(s) = 0}.
Then, the minimum of γ(β) over β is taken when β = ρ+1 with γ(ρ+1) = ρ+1.

Proof. To make the dependence of F−(s), T−(s) on β visible, write

F−(s) = F−(s, β) and T−(s) = T−(s, β)

By (10.4), we have

sκF−(s, β) = sκ(1− T−(s, β)) =
sκP (s)− sκQ(s)

2
= B +A

∫ s

β

dtκ

(t− 1)κ
.

Note that the constants A,B are indeed functions of β given by

A(β) =
2q(β)

D(β)
and B(β) =

(
β − 1

β

)1−κ
2q(β − 1)

D(β)

as determined in Proposition 11.8. We first evaluate the value of γ(ρ + 1). Since

q(ρ) = 0 by definition, we have B(ρ+1) = 0. Therefore, we have F−(ρ+1, ρ+1) = 0.

Since s 7→ F−(s, β) is strictly increasing, we find that γ(ρ+ 1) = ρ+ 1. Therefore,

by the monotonicity of s 7→ F−(s, β), it suffices to show

F−(ρ+ 1, β) ≤ 0 for ρ̃ < β < ρ+ 1.

Since β < ρ+ 1 < β + 1, we have

F−(ρ+ 1, β) ≤ 0 ⇐⇒ B(β) +A(β)

∫ ρ+1

β

dtκ

(t− 1)κ
≤ 0

⇐⇒ (β − 1)1−κq(β − 1)

β1−κq(β)
+

∫ ρ+1

β

dtκ

(t− 1)κ
≤ 0.

We thus study

φ(β) :=
(β − 1)1−κq(β − 1)

β1−κq(β)
+

∫ ρ+1

β

dtκ

(t− 1)κ
.

By (11.2), we have(
(β − 1)1−κq(β − 1)

β1−κq(β)

)′
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=
κ(β − 1)−κq(β) · β1−κq(β)− (β − 1)1−κq(β − 1) · κβ−κq(β + 1)

(β1−κq(β))2

=
κβκ−1

(β − 1)κ
− κ(β − 1)1−κq(β − 1) · q(β + 1)

β2−κq(β)2

and so

φ′(β) = −κ(β − 1)1−κq(β − 1) · q(β + 1)

β2−κq(β)2
.

By Proposition 11.2 and the definition of ρ, we then have

φ′(β) > 0 for ρ̃ < β < ρ+ 1.

This shows
φ(β) < φ(ρ+ 1) = 0 for ρ̃ < β < ρ+ 1

and completes the proof. □
By Proposition 12.1, we find that the optimal choice of β is

β = βκ = ρ+ 1

since ρκ+1 = 1, the least possible β if κ ≤ 1
2 . We therefore take β = ρκ+1 below.

We then check the behavior of β as κ↘ 1
2 .

Proposition 12.2.

(i) For κ > 1
2 , we have β > 1.

(ii) We have β − 1 ∼ πeγ(2κ− 1)2 and so β → 1 as κ↘ 1
2 .

Proof.

(i). When κ > 1
2 , by Proposition 10.14, ρκ is a genuine zero of the function

qκ(s) = rκ,κ(s) and so ρκ > 0. We then have βκ = ρκ + 1 > 1.

(ii). Consider the range 1
2 < κ < 3

4 . We then have κ+ κ− 1 < 1. Thus, we can use
Lemma 10.5 with N = 1 with recalling Lemma 10.7 to obtain

qκ(s) = rκ,κ(s) = s2κ−1 +
1

Γ(1− 2κ)

∫ ∞

0

(
Φκ(−x)− 1

)
e−sxx−2κdx for s > 0.

By substituting s = ρκ > 0 with recalling qκ(ρ) = 0, we have

ρ2κ−1
κ = − 1

Γ(1− 2κ)

∫ ∞

0

(
Φκ(−x)− 1

)
e−ρκxx−2κdx.

By changing the variable via x = t
ρκ
, we have

(12.1) ρκκ = − 1

Γ(1− 2κ)

∫ ∞

0

(
Φκ(− t

ρκ
)− 1

( t
ρκ
)κ

)
e−tt−κdt.

For 0 < x ≤ 1, we have

Φκ(−x)− 1

xκ
=
eκEin(x) − 1

xκ
=
κEin(x)

xκ

∞∑
m=0

(κEin(x))m

(m+ 1)!
� x1−κ � 1

since Ein(x) ≤ Ein(1), where the implicit constant is independent of κ. For x ≥ 1,

Φκ(−x)− 1

xκ
� x−κ

(
exp

(
κ

∫ x

0

1− e−t

t
dt

)
+ 1

)
� 1
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where again the implicit constant is independent of κ. Therefore, we have∫ ∞

0

(
Φb(− x

ρκ
)− 1

( xρκ
)κ

)
e−xx−κdx�

∫ ∞

0

e−x(x−
3
4 + x−

1
2 )dx� 1,

where the implicit constant is independent of κ. Thus, by (12.1),

ρκ → 0 as κ↘ 1
2 .

As x→ ∞, by Lemma 10.9, we have

Φκ(−x)
xκ

= exp

(
κ

∫ x

0

1− e−t

t
dt− κ

∫ x

1

dt

t

)
= exp

(
κ

∫ 1

0

1− e−t

t
dt− κ

∫ x

1

e−t

t
dt

)
→ exp

(
κ

∫ 1

0

1− e−t

t
dt− κ

∫ ∞

1

e−t

t
dt

)
= eκγ .

On inserting this formula and

1

Γ(1− 2κ)
∼ (1− 2κ) as κ↘ 1

2

into (12.1), we therefore have

ρκκ ∼ Γ(1− κ)eκγ(2κ− 1) ∼ π
1
2 e

γ
2 (2κ− 1) as κ↘ 1

2

and so
ρκ ∼ π

1
2κ e

γ
2κ (2κ− 1)

1
κ ∼ πeγ(2κ− 1)2 as κ↘ 1

2

since

(2κ− 1)
1
κ−2 = exp

(
− 1

κ
(2κ− 1) log(2κ− 1)

)
→ 1 as κ↘ 1

2 .

This completes the proof. □

13. The error majorants T̂±(s)

Let β = ρ + 1 as chosen in the previous section. In order to estimate the error
in the approximation of TN (D, z), we need two more auxiliary functions

T̂± : (0,+∞) → R.
In order to define these functions, we let

(13.1) κ̂ :=

{
κ if κ > 1

2 ,
1
2 + δ if 0 < κ ≤ 1

2

with some small δ > 0 and write

β̂ = β̂κ = βκ̂.

We may suppose

(13.2)

{
β̂κ = βκ ∈ (1,+∞) if κ > 1

2 ,

β̂κ ∈ (1, 2) if 0 < κ ≤ 1
2

by taking δ sufficiently small by Proposition 12.2.

Then, we require T̂±(s) to satisfy the following conditions.

(T̂1) The functions T̂±(s) are continuous on (0,+∞).
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(T̂2) The functions T̂±(s) are differentiable on (0, β̂ + 1) ∪ (β̂ + 1,+∞).

(T̂3) The functions T̂±(s) are solutions of the delay differential equations

(sκ̂+1T̂±(s))′ = −κ̂sκ̂T̂∓(s− 1) for s > β̂ + ε±.

(T̂4) The initial functions of T̂±(s) are given by{
sκ̂+1T̂+(s) = Â for 0 < s ≤ β̂ + 1,

sκ̂+1T̂−(s) = B̂ for 0 < s ≤ β̂.

with some suitable constants Â and B̂
(T̂5) The functions T̂±(s) satisfy the decay condition

T̂±(s) = O(e−s).

In this section, we determine the appropriate values of Â, B̂ and prepare some

lemmas on these functions T̂±(s). Since (T̂3) is linear, it is irrelevant to change

Â, B̂ by multiplying some non-zero constant.
As is done for T±(s), we define{

P̂ (s) := T̂+(s)− T̂−(s)

Q̂(s) := T̂+(s) + T̂−(s)
for s ≥ β̂.

We then have

(13.3)

{
(sκ̂+1P̂ (s))′ := +κ̂sκ̂P̂ (s− 1)

(sκ̂+1Q̂(s))′ := −κ̂sκ̂Q̂(s− 1)
for s > β̂ + 1.

We extend P̂ , Q̂ to β̂ − 1 < s ≤ β̂ similarly to P,Q. We first observe

(13.4)


sκ̂+1P̂ (s) = Â− B̂ + Â

∫ s

β̂

κ̂tκ̂

(t− 1)κ̂+1
dt

sκ̂+1Q̂(s) = Â+ B̂ − Â

∫ s

β̂

κ̂tκ̂

(t− 1)κ̂+1
dt

for β̂ ≤ s ≤ β̂ + 1.

Thus, in order to keep (13.3) even for s ∈ (β̂, β̂ + 1), we let

(13.5) sκ̂+1P̂ (s) = sκ̂+1Q̂(s) := Â for 0 < s < β̂.

By recalling (i) of Proposition 10.8, we next consider the standard solutions{
p̂(s) := rκ̂+1,−κ̂(s) = 1

q̂(s) := rκ̂+1,+κ̂(s)

of the adjoint equation

(13.6)

{
(sp̂(s))′ := (κ̂+ 1)p̂(s)− κ̂p̂(s+ 1)

(sq̂(s))′ := (κ̂+ 1)q̂(s) + κ̂q̂(s+ 1).

associated to (13.3). We next determine the Iwaniec pairings

〈P̂ , p̂〉 and 〈Q̂, q̂〉.
By Lemma 10.2 and (13.4), we have

〈P̂ , p̂〉(s) = −B̂p̂(β̂)β̂−κ̂ + Â(β̂ − 1)−κ̂p̂(β̂ − 1) = −β̂−κ̂B̂ + (β̂ − 1)−κ̂Â.
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since p̂(s) = 1. By (T̂5) and Lemma 10.26, we should have

0 = 〈P̂ , p̂〉(s) = −β̂−κ̂B̂ + (β̂ − 1)−κ̂Â.

We thus take Â, B̂ by

(13.7) Â := (β̂ − 1)κ̂ and B̂ := β̂κ̂.

which satisfies 〈P̂ , p̂〉(s) = 0. Similarly, we have

〈Q̂, q̂〉(s) = +B̂q̂(β̂)β̂−κ̂ + Â(β̂ − 1)−κ̂q̂(β̂ − 1) = q̂(β̂) + q̂(β̂ − 1).

By (13.6) with s = β̂ − 1 and Proposition 10.11, we have

〈Q̂, q̂〉(s) = β̂ − 1

κ̂
q̂′(β̂ − 1) =

β̂ − 1

κ̂
r′κ̂+1,κ̂(β̂ − 1) = 2(β̂ − 1)rκ̂,κ̂(β̂ − 1).

By recalling the definition of qκ, βκ, ρκ, we have

〈Q̂, q̂〉(s) = 2(β̂ − 1)qκ̂(ρκ̂) = 0

since ρκ̂ is, by definition, the largest zero of qκ̂(s). In summary, we get

(13.8) 〈P̂ , p̂〉(s) = 〈Q̂, q̂〉(s) = 0.

We have

(13.9) |P̂ (s)| = (β̂ − 1)κ̂

sκ̂+1
= Q̂(s) for β̂ − 1 < s < β̂.

and Q̂(s) is not constantly zero for β̂ − 1 < s < β̂.

Then, we have the following basic properties for T̂±(s):

Proposition 13.1. For the functions T̂±(s) defined as above, we have

(i) For s > 0, we have

T̂±(s) > 0 and T̂+(s) � T̂−(s) � Q̂(s),

where the implicit constant depends only on κ and δ.
(ii) For s ≥ 1, we have

T̂±(s) � exp(−s log s− s log log 3s+ s log eκ̂)

and

T̂±(s) = exp

(
−s log s− s log log 3s+ s log eκ̂+O

(
s log log 3s

log 2s

))
,

where the implicit constant depends only on κ and δ.
(iii) For s > 1, we have

(s− 1)κ̂+1T̂±(s− 1) � sκ̂+1T̂±(s)(s log 3s),

where the implicit constant depends only on κ and δ.

Proof.

(i) By (T̂4), (13.5) and (13.7), the assertion is trivial for 0 < s < β̂. It thus suffices

to consideer the range s ≥ β̂. We first prove that

(13.10) q̂(s) > 0 for s ≥ β̂.
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As we saw above, Proposition 10.11 gives

q̂′(s) = r′κ̂+1,κ̂(s) = 2κ̂rκ̂,κ̂(s) = 2κ̂qκ̂(s).

By the definition of β̂, we have

q̂′(s) > 0 for s > β̂ − 1.

By (13.6), we thus have

0 ≤ (s− 1)q̂′(s− 1)

κ̂
= q̂(s− 1) + q̂(s) < q̂(s) for s ≥ β̂

as desired. Therefore, by (13.8) and (13.9), we can use Lemma 10.17 to conclude
that there is η = η(κ) ∈ (0, 1) such that

|P̂ (s)| < ηQ̂(s) for s ≥ β̂.

We then have

T̂±(s) =
±P̂ (s) + Q̂(s)

2
≤ 1

2
(Q̂(s) + |P̂ (s)|) ≥ 1 + η

2
Q̂(s) for s ≥ β̂

and

T̂±(s) =
±P̂ (s) + Q̂(s)

2
≥ 1

2
(Q̂(s)− |P̂ (s)|) ≥ 1− η

2
Q̂(s) > 0 for s ≥ β̂

and so

T̂±(s) � Q̂(s).

This completes the proof.

(ii)., (iii) By (13.5), Q̂(s) > 0 for β̂ − 1 < s < β̂. Hence, in the range s ≥ β̂, (ii)
and (iii) follows by (i) proven above, Lemma 10.24, Lemma 10.25 and Lemma 10.29

with using (13.8) and (13.10). For the remaining range 1 ≤ s ≤ β̂, the assertion

(ii) is trivial. For the remaining range 0 < s ≤ β̂, the assertion (iii) follows by the

definition (13.5) of the extended part of Q̂(s). □

We also need the following two inequalities:

Lemma 13.2. We have

sκT±(s) � sκ̂+1T̂±(s) for s ∈ I±,

where the implicit constant depends only on κ and δ.

Proof. When β − 1 < s ≤ β + 1 ≤ β̂ + 1, we have

sκT+(s) = A− sκ and sκ̂+1T̂+(s) = Â

as in (10.5) and (13.5). Since A, Â > 0 and A > (β + 1)κ, we have

0 ≤ sκT+(s) ≤ A

Â
· sκ̂+1T̂+(s) for β − 1 < s ≤ β + 1.

By (iv) of Proposition 11.8 and (i) of Proposition 13.1, we also have

sκT±(s) � sκ̂+1T̂±(s) for β ≤ s ≤ β + 2.

By the positivity of fn(s), we thus have

(13.11) sκT±(s) ≤ C · sκ̂+1T̂±(s) for s ∈ (β − 1, β + 2] ∩ IN .
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with some real number C = C(κ) ≥ 1. By (ii) of Proposition 13.1 and (T̂3),

(13.12) sκ̂+1T̂±(s) = κ̂

∫ ∞

s

tκ̂T̂∓(t− 1)dt for s ≥ β̂.

By the convergence part of Proposition 11.8, it thus suffices to prove

(13.13) sκTN (s) ≤ C · sκ̂+1T̂ (−)
N

(s) for s ∈ IN and N ≥ 1,

where C is the same one as in (13.11). We use induction on N ≥ 1.

Initial case N = 1. Recall that T1(s) is supported only on (β− 1, β+1] as stated in
Proposition 9.3. Therefore, (13.13) follows by (13.11).

Induction step from N − 1 to N . By (13.11), we may assume s ≥ β +2. By (ii) and
(iii) of Proposition 9.3 and Lemma 11.10, by integrating, we have

sκTN (s) = κ

∫ ∞

s

tκ−1TN−1(t− 1)dt for s ≥ β + 1.

By (13.2), we have

s ≥ β + 2 ≥ β̂ + 1

and so by the induction hypothesis and (13.12), we then have

sκTN (s) ≤ κ

∫ ∞

s

tκ−1TN−1(t− 1)dt

≤ C · κ
∫ ∞

s

tκ−1(t− 1)κ̂−κ+1T̂ (−)
N−1

(t− 1)dt

≤ C · κ̂
∫ ∞

s

tκ̂T̂ (−)
N−1

(t− 1)dt ≤ C · sκ̂+1T̂ (−)
N

(s)

This proves (13.13) for the N -th case. □

Lemma 13.3. For a real number θ satisfying

θ ∈

{
(0,+∞) if κ > 1

2 ,

( 12 ,+∞) if 0 < κ ≤ 1
2 ,

we have

sκ̂+1T̂±(s) > κ̂

∫ ∞

s

(
t− 1

t

)θ
tκ̂T̂∓(t− 1)dt for s ≥ β + ε±

provided δ is sufficiently small in terms of θ and κ, i.e. 0 < δ ≤ δ0(θ, κ).

Proof. By (ii) of Proposition 13.1 and the defining equation of T̂±(s), we have

(13.14) sκ̂+1T̂±(s) = κ̂

∫ ∞

s

tκ̂T̂∓(t− 1)dt for s ≥ β̂ + ε±.

Thus, the assertion is obvious for s ≥ β̂ + ε± since(
t− 1

t

)θ
< 1.
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We thus consider the case β+ ε± ≤ s < β̂+ ε±, which occurs only if 0 < κ ≤ 1
2 . In

this case, we have β = 1, 1 < β̂ < 2 and θ > 1
2 . Also, in this range β + ε± ≤ s <

β̂ + ε±, as defined in (T̂4), we have

sκ̂+1T̂±(s) = β̂κ̂+1T̂±(β̂).

Thus, it suffices to show

β̂κ̂+1T̂±(β̂) > κ̂

∫ ∞

1+ε±

(
t− 1

t

)θ
tκ̂T̂∓(t− 1)dt.

By (13.14), we have

β̂κ̂+1T̂±(β̂) = (β̂ + ε±)
κ̂+1T̂±(β̂ + ε±) = κ̂

∫ ∞

β̂+ε±

tκ̂T̂∓(t− 1)dt.

We therefore have

β̂κ̂+1T̂±(β̂)− κ̂

∫ ∞

1+ε±

(
t− 1

t

)θ
tκ̂T̂∓(t− 1)dt = κ̂(I± − J±),

where

I± :=

∫ ∞

β̂+ε±

(
1−

(
t− 1

t

)θ)
tκ̂T̂∓(t− 1)dt

J± :=

∫ β̂+ε±

1+ε±

(
t− 1

t

)θ
tκ̂T̂∓(t− 1)dt.

Therefore, it suffices to prove

(13.15) I± > J± for sufficiently small δ > 0.

We now consider the signs ± separately.

Case I. The sign +. By (T̂3) and (i) of Proposition 13.1, T̂−(s) is decreasing for

s ≥ β̂. Therefore, by recalling θ > 1
2 , we have

I+ ≥
∫ β̂+2

β̂+1

(
1−

(
t− 1

t

)θ)
tκ̂T̂−(t− 1)dt

≥
(
1−

(
β̂ + 1

β̂ + 2

)θ)
T̂−(β̂ + 1)

≥ (1− ( 34 )
1
2 )T̂−(β̂ + 1).

By (T̂3) and (T̂4), we have

sκ̂+1T̂−(s) = B̂ − Â

∫ s

β̂

κ̂tκ̂

(t− 1)κ̂+1
dt for β̂ ≤ s ≤ β̂ + 2.

By substituting s = β̂ + 1 and s = β̂ + 2 and then taking the difference, we have

(β̂ + 1)κ̂+1T̂−(β̂ + 1) > (β̂ + 1)κ̂+1T̂−(β̂ + 1)− (β̂ + 2)κ̂+1T̂−(β̂ + 2)

= Â

∫ β̂+2

β̂+1

κ̂tκ̂

(t− 1)κ̂+1
dt ≥ κ̂

β̂ + 1
Â =

κ̂

β̂ + 1
(β̂ − 1)κ̂
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and so

I+ ≥ (1− ( 34 )
1
2 )T̂−(β̂ + 1) ≥ (1− ( 34 )

1
2 )

κ̂

β̂ + 1
(β̂ − 1)κ̂

On the other hand, by (T̂4), by choosing δ small so that θ > κ̂, we have

J+ =

∫ β̂+1

2

(
t− 1

t

)θ
tκ̂T̂−(t− 1)dt

= B̂

∫ β̂+1

2

tκ̂−θ(t− 1)θ−κ̂−1dt ≤ β̂θB̂

∫ β̂+1

2

dt = β̂κ̂+θ(β̂ − 1).

By recalling the definition of β̂, we have

β̂ = βκ̂ = βκ+δ → 1 as δ ↘ 0

as proved in Proposition 12.2. Therefore, we have

I+ � (β̂ − 1)κ̂, J+ � (β̂ − 1) and κ̂ < 1 as δ ↘ 0

and (13.15) holds when ± = +.

Case II. The sign −. By (T̂4) and (13.7), we have

I− ≥
∫ β̂+1

β̂

(
1−

(
t− 1

t

)θ)
tκ̂T̂+(t− 1)dt

≥
(
1−

(
β̂

β̂ + 1

)θ)∫ β̂+1

β̂

T̂+(t− 1)dt

≥ (1− ( 23 )
1
2 )

∫ β̂+1

β̂

T̂+(t− 1)dt

= (1− ( 23 )
1
2 )Â

∫ β̂+1

β̂

(t− 1)−(κ̂+1)dt

= (1− ( 23 )
1
2 )
Â

κ̂

(
(β̂ − 1)−κ̂ − β̂−κ̂

)
= (1− ( 23 )

1
2 )

1

κ̂

(
1− β̂−κ̂(β̂ − 1)κ̂

)
By (T̂4) and (13.7) again, and taking δ small enough to make

κ̂ = 1
2 + δ < θ − 1

2 (θ −
1
2 )

(recall that θ > 1
2 and so θ − 1

2 (θ −
1
2 ) >

1
2 ), we also have

J− =

∫ β̂

1

(
t− 1

t

)θ
tκ̂T̂+(t− 1)dt = Â

∫ β̂

1

tκ̂−θ(t− 1)θ−κ̂−1dt

≤ Â

∫ β̂

1

(t− 1)
1
2 (θ−

1
2 )−1dt

=
2Â

(θ − 1
2 )

(β̂ − 1)
1
2 (θ−

1
2 )

=
2

(θ − 1
2 )

(β̂ − 1)κ̂+
1
2 (θ−

1
2 )
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We thus have

J− → 0 as δ ↘ 0.

By recalling the definition of β̂, we have

β̂ = βκ̂ = βκ+δ → 1 as δ ↘ 0

as proved in Proposition 12.2. Therefore, we have

I− → (1− ( 23 )
1
2 )

1

κ̂
> 0 and J− → 0 as δ ↘ 0

and (13.15) holds when ± = −. □

14. Completion of the proof of the Rosser–Iwaniec sieve

We now move on to the completion of the proof of the Rosser–Iwaniec sieve. The
remaining task is to estimate the sum

Vn(D, z) =
∑

z>p1>···>pn
p1···pmp

β
m<D (1≤m<n,m≡n (mod 2))

p1···pnp
β
n≥D

ω(p1 · · · pn)V (pn).

defined in (6.2). Recall that

Vn(D, z) =


∑

y1≤p<z

ω(p)V (p) if n = 1,

∑
yn≤p<zn

ω(p)Vn−1

(
D

p
, p

)
if n ≥ 2 and s ≥ β − εn

as proved in Lemma 7.1. Let us introduce

TN (D, z) :=
∑

1≤n≤N
n≡N (mod 2)

Vn(D, z).

Lemma 14.1. For D, z ≥ 2, n ∈ N and ω ∈ Ω(κ,K), we have

Vn(D, z) ≤
Ln

n!
where

L = L(z, κ,K) := κ log
log z

log 2
+ log

(
1 +

K

log 2

)
.

Proof. We have

Vn(D, z) ≤
∑

z>p1>···>pn

ω(p1 · · · pn)V (pn)

≤
∑

z>p1>···>pn

ω(p1 · · · pn)

≤ 1

n!

(∑
p<z

ω(p)
)n
.
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Since ω ∈ Ω(κ,K), we have∑
p<z

ω(p) ≤
∑
p<z

log(1− ω(p))−1 = log
V (2)

V (z)
≤ κ log

log z

log 2
+ log

(
1 +

K

log 2

)
and so the assertion follows. □

Lemma 14.2. For x ≥ 0 and N ∈ Z≥0, we have

xN

N !
≤

∞∑
n=N

xn

n!
≤ xN

N !
ex.

Proof. The first bound is obvious. The second bound can be obtained by
∞∑
n=N

xn

n!
=

∞∑
m=0

xN+m

(N +m)!
=
xN

N !

∞∑
m=0

1(
N+m
m

) xm
m!

≤ xN

N !

∞∑
m=0

xm

m!
≤ xN

N !
ex.

This completes the proof. □

Lemma 14.3. For D ≥ z ≥ 2 with s ≥ β, N ∈ N and ω ∈ Ω(κ,K), we have

TN (D, z) ≤ exp
(
−s log s+ s logL+ s+ L+O(log 2s)

)
,

where the implicit constants depends at most on κ.

Proof. Since we have
s ≥ β + n =⇒ Vn(D, z) = 0,

we have
TN (D, z) =

∑
1≤n≤N

n≡N (mod 2)

Vn(D, z) =
∑

s−β<n≤N
n≡N (mod 2)

Vn(D, z).

By Lemma 14.1, we have

TN (D, z) ≤
∑

n>s−β

Ln

n!
=

∞∑
n=[s−β]+1

Ln

n!
.

Since L ≥ 0, by Lemma 14.2, we have

TN (D, z) ≤ L[s−β]+1

([s− β] + 1)!
eL.

By using the bound
n! ≥ exp(n log n− n)

obtained by

en =

∞∑
m=0

nn

n!
≥ nn

n!
and so n! ≥

(
n

e

)n
= exp(n log n− n)

and the bound [s− β] + 1 ≤ s− β + 1 ≤ s, we have

TN (D, z)

≤ exp
(
−([s− β] + 1) log([s− β] + 1) + ([s− β] + 1) + ([s− β] + 1) logL+ L

)
≤ exp

(
−([s− β] + 1) log([s− β] + 1) + s logL+ s+ L

)
.
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If β ≤ s < 2β, we trivially have

−([s− β] + 1) log([s− β] + 1) = −s log s+O(log 2s)

If s ≥ 2β, since [s− β] + 1 > s− β ≥ β ≥ 1, we have

−([s− β] + 1) log([s− β] + 1) ≤ −(s− β) log(s− β) = −s log s+O(log 2s).

Therefore, we have

TN (D, z) ≤ exp
(
−s log s+ s logL+ s+ L+O(log 2s)

)
.

This completes the proof. □

Lemma 14.4. For N ∈ N, D, z ≥ 2 with s := logD
log z ∈ IN , ∆ ∈ (0,∆0) with

∆0 = ∆0(κ) =

{
1 if κ > 1

2 ,

1
2 if 0 < κ ≤ 1

2

and a real number d with

(14.1) d >
7

∆0 −∆

and ω ∈ Ω(κ,K), we have

TN (D, z) ≤ V (z)
(
TN (s) + Ce

√
KEN (D, s)(logD)−∆),

where the function EN (D, s) is defined by

EN (D, s) :=

(
1 +

sd

logD

)s
sκ̂−κ+1T̂±(s)

with

± :=

{
+ if N is odd,
− if N is even

and the constants C ≥ 1 depends only on κ,∆, d.

Proof. We choose δ in (13.1) based on κ and ∆ so that Lemma 13.3 with

θ := 1−∆0 +
1
2 (∆0 −∆) ∈

{
(0,+∞) if κ > 1

2 ,

( 12 ,+∞) if 0 < κ ≤ 1
2 ,

i.e. the inequality

(14.2) κ̂

∫ ∞

s

(
t− 1

t

)1−∆0+
1
2 (∆0−∆)

tκ̂T̂∓(t− 1)dt ≤ sκ̂+1T̂±(s)

holds for s ≥ β + ε±.
We also take ΘK > 0 fixed for a given κ,∆, d such that

(14.3)
1

ΘK
>

2

d
,

(14.4)
2

ΘK
+

3

d
< ∆0 −∆

which is possible since
4

d
+

3

d
< ∆0 −∆

by the assumption (14.1)
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We next show a preliminary estimate. Indeed, this estimate proves the assertion
when D is small or when s is large. Let

σ := (logD)
1
d (log log 27D).

For later necessity, we prove an estimate bit stronger than the lemma.

Claim 14.5. When s ≥ β and

(14.5) logD ≤ C1K
ΘK or s ≥ σ,

we have

TN (D, z) � V (D) · 1

logD

e
√
K

σ
EN (D, s)(logD)−∆,

where the implicit constant is independent of C1 if logD ≥ C1K
ΘK .

Proof. Since ω ∈ Ω(κ,K), we have

V (D)−1 � K(logD)κ.

Thus, by (ii) of Proposition 13.1, we have

(14.6)

V (D) · 1

logD

e
√
K

σ
EN (D, s)(logD)−∆

= V (D) · 1

logD

e
√
K

σ

(
1 +

sd

logD

)s
sκ̂−κ+1T̂±(s)(logD)−∆

� exp

(
−s log s− s log log 3s+ s log

(
1 +

sd

logD

)
+

√
K

+O

(
logK + log logD + s

))
since we have s ≥ β by the assumption. We consider two cases separately.

Case A. logD ≤ C1K
ΘK . We use Lemma 14.3. We have

(14.7)
L = κ log

log z

log 2
+ log

(
1 +

K

log 2

)
� log logD + logK � logK.

When s ≤ K
1
2 (logK)−1, by Lemma 14.3 and (14.6), we have

TN (D, z) ≤ exp
(
−s log s+ s log log 3K +O(logK + s)

)
� exp

(
−s log s− s log log 3s+ 1

2

√
K
)

� V (D) · 1

logD

e
√
K

σ
EN (D, s)(logD)−∆.

When s ≥ K
1
2 (logK)−1, we have

logD � KΘK � s2ΘK (log s)2ΘK

and so

s log

(
1 +

sd

logD

)
≥ s log log 3K + 2s log log 3s+O(1)
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by using

d− 2ΘK > 0

assured by (14.3). Thus, by Lemma 14.3 and (14.6), we have

TN (D, z) ≤ exp
(
−s log s+ s log log 3K +O(logK + s)

)
� exp

(
−s log s− 2s log log 3s+ s log

(
1 +

sd

logD

)
+ 1

2

√
K +O(s)

)
� V (D) · 1

logD

e
√
K

σ
EN (D, s)(logD)−∆.

Therefore, the claim holds.

Case B. logD ≥ C1K
ΘK and s ≥ σ. In this case, by (14.7), we have

L � (log log 27D)

(
1 +

logK

log log 27D

)
� log log 27D.

Also, since s ≥ σ = (logD)
1
d (log log 27D), we have

s ≥ (logD)
1
d and

sd

logD
� (log 3s)d.

We thus have

logL ≤ log log log 3D +O(1) ≤ log log 3s+O(1),

s log

(
1 +

sd

logD

)
≥ ds log log 3s+O(s).

We also have

L � log log 27D � log s.

Therefore, by Lemma 14.3 and (14.6), we have

TN (D, z) ≤ exp

(
−s log s+ s log log 3s+O(s)

)
≤ exp

(
−s log s− (d− 1)s log log 3s+ s log

(
1 +

s

logD

)
+O(s)

)
� V (D) · 1

logD

e
√
K

σ
EN (D, s)(logD)−∆

since (14.1) implies

d >
7

∆0 −∆
> 7.

Therefore, the claim holds even for this case. □

We now prove the lemma by induction on N .

Initial case N = 1. For T1(D, z), we have

T1(D, z) = V1(D, z) = 0 for s > β + 1.

Thus, we may assume β − 1 < s ≤ β + 1. By Lemma 7.1 and Lemma 8.4, recalling

y1 = D
1

β+1 and z = D
1
s ≥ y1,
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we have

T1(D, z) = V1(D, z) =
∑

y1≤p<z

ω(p)V (p)

=
∑

max(y1,2)≤p<z

ω(p)V (p)

= V (z)
∑

max(y1,2)≤p<z

ω(p)
V (p)

V (z)

= V (z)

(
V (max(y1, 2))

V (z)
− 1

)
.

Since ω ∈ Ω(κ,K) and z ≥ max(y1, 2) ≥ 2, we have

T1(D, z) ≤ V (z)

((
log z

logmax(y1, 2)

)κ
− 1 +

K

log z

(
log z

logmax(y1, 2)

)κ+1)
≤ V (z)

((
log z

log y1

)κ
− 1 +

K

log z

(
log z

log y1

)κ+1)
≤ V (z)

(
(β + 1)κ − sκ

sκ
+
K(β + 1)κ+1

sκ logD

)
= V (z)

(
T1(s) +

K(β + 1)κ+1

sκ logD

)
.

For β − 1 < s < β + 1, by (T̂4) and (13.7), we have

(β + 1)κ+1s−κ � sκ̂−κ+1T̂+(s).

Therefore, for large C ≥ C(κ,∆), we have

(14.8) T1(D, z) = V1(D, s) ≤ V (z)
(
T1(s) +O(Ksκ̂−κ+1T̂+(s)(logD)−1)

)
.

This is stronger than the assertion and proves the case N = 1.

Induction step from N − 1 to N with N ≥ 2. For the sum Vn(D, z), we have

s > β + n =⇒ Vn(D, z) = 0

and so we may assume s ≤ β + N . By Claim 14.5, the assertion follows when
(14.5) with C depending on C1. From now on, in this induction step, every implicit
constant is independent of C1. We subdivide the remaining case into two cases:

• Case I. When β + εN ≤ s ≤ σ and logD ≥ C1K
ΘK .

• Case II. When β − 1 < s ≤ β + 1, logD ≥ C1K
ΘK and N is odd.

where C1 is some large constant C1 = C1(κ,∆).

Case I. When β + εN ≤ s ≤ σ and logD ≥ C1K
ΘK . We have

zn := D
min( 1

s ,
1

β+εn
)
= D

min( 1
s ,

1
β+εN

)
= D

1
s = z for n ≡ N (mod 2)

and
V1(D, z) = 0 if N is odd.

By Lemma 7.1, we have

Vn(D, z) =
∑

yn≤p<z

ω(p)Vn−1

(
D

p
, p

)
for n ≥ 2 with n ≡ N (mod 2).
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Note that

p < yn =⇒
log D

p

log p
=

logD

log p
− 1 > β + n− 1 =⇒ Vn−1

(
D

p
, p

)
= 0

and so we can write

Vn(D, z) =
∑
p<z

ω(p)Vn−1

(
D

p
, p

)
for n ≥ 2 with n ≡ N (mod 2).

By taking the sum over n, we have

TN (D, z) =
∑

1≤n≤N
n≡N (mod 2)

Vn(D, z)

=
∑

2≤n≤N
n≡N (mod 2)

Vn(D, z)

=
∑
p<z

ω(p)
∑

2≤n≤N
n≡N (mod 2)

Vn−1

(
D

p
, p

)

=
∑
p<z

ω(p)
∑

1≤n≤N−1
n≡N−1 (mod 2)

Vn

(
D

p
, p

)

=
∑
p<z

ω(p)TN−1

(
D

p
, p

)
.

Furthermore, note that the parameter z appears on the right-hand side only in the
summation condition on p. Thus, we can decompose as

(14.9) TN (D, z) =
∑

0
+
∑

1
+
∑

2
,

where ∑
0
:=

∑
p<D

1
σ

ω(p)TN−1

(
D

p
, p

)
= TN (D,D

1
σ ),

∑
1
:=

∑
D

1
σ ≤p<D

1
τ

ω(p)TN−1

(
D

p
, p

)
,

∑
2
:=

∑
D

1
τ ≤p<z

ω(p)TN−1

(
D

p
, p

)
.

and

τ := max

(
s,

(
1− log 2

logD

)−1)
> 1 and so D

1
τ = min(z, D2 ).

We first consider the sum∑
1
=

∑
D

1
σ ≤p<D

1
τ

ω(p)TN−1

(
D

p
, p

)
.
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Note that we may assume σ ≥ τ ≥ s since otherwise
∑

1 is empty. Since

p < z and s ≥ β + εN =⇒
log D

p

log p
=

logD

log p
− 1 ∈ IN−1,

D/2 = D1− log 2
log D

and p < D/2 assures D/p ≥ 2, we can use the induction hypothesis to obtain

(14.10)
∑

1
≤
∑

11
+
∑

12

where∑
11

:= V (z)
∑

D
1
σ ≤p<D

1
τ

ω(p)
V (p)

V (z)
TN−1

(
logD

log p
− 1

)
,

∑
12

:= Ce
√
KV (z)

∑
D

1
σ ≤p<D

1
τ

ω(p)
V (p)

V (z)
EN−1

(
D

p
,
logD

log p
− 1

)(
log

D

p

)−∆

with

τ := max

(
s,

(
1− log 2

logD

)−1)
.

Note that we have (
1− log 2

logD

)−1

≤ 2 � s and so τ � s

if D ≥ C1 ≥ 4. We estimate the sums
∑

11 and
∑

12 separately.
For the sum

∑
11, we use Lemma 8.7. By Proposition 9.3, we have

tκTN−1(t− 1) =

(
1 +

1

t− 1

)κ
(t− 1)κTN−1(t− 1)

is decreasing and continuous for t ≥ τ > 1. Thus, Lemma 8.7 gives∑
11

≤ V (z)

(∫ σ

s

TN−1(t− 1)
dtκ

sκ
+

3(κ+ 1)K2TN−1(τ − 1)

logD
1
σ

(
τ

s

)κ)
.

By (iii) of Proposition 9.3, we have∑
11

≤ V (z)

(
TN (s) +

(κ+ 1)K2σTN−1(τ − 1)

logD

(
τ

s

)κ)
.

By Lemma 13.2 and (i), (iii) of Proposition 13.1 gives

TN−1(τ − 1)

(
τ

s

)κ
� (τ − 1)κ̂−κ+1T̂∓(τ − 1)

(
τ

s

)κ
� (τ − 1)−κ(τ log eτ)τ κ̂+1T̂∓(τ)

(
τ

s

)κ
�
(

τ

τ − 1

)κ
(σ log eσ)sκ̂−κ+1T̂±(s)

since tκ̂+1T̂±(t) is decreasing. Thus, we have∑
11

≤ V (z)

(
TN (s) +O

((
τ

τ − 1

)κ
(σ2 log eσ)

K2sκ̂−κ+1T̂±(s)

logD

))
.
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When κ > 1
2 , we have

τ ≥ s ≥ β > 1 and so

(
τ

τ − 1

)κ
� 1.

When κ ≤ 1
2 , we have

τ ≥
(
1− log 2

logD

)−1

and so

(
τ

τ − 1

)κ
≤
(
logD

log 2

)κ
� (logD)κ.

Thus, in any case, we have

(14.11)

(
τ

τ − 1

)κ
� (logD)(1−∆0).

We thus have∑
11

≤ V (z)

(
TN (τ) +O

(
(σ3 log eσ)

K2

σ
τ κ̂−κ+1T̂±(s)(logD)−∆0

))
.

(The denominator σ in the error term is kept for later necessity.) Note that

σ3 log eσ � (logD)
3
d (log logD)4.

Thus, we arrive at

(14.12)
∑

11
≤ V (z)

(
TN (s) +O

(
1

log logD

K2

σ
EN (D, z)(logD)−∆

))
since

3

d
< ∆0 −∆

assured by (14.1). This completes the estimate of
∑

11.
For the sum

∑
12, by writing

sp :=
logD

log p
,

note that

EN−1

(
D

p
,
logD

log p
− 1

)(
log

D

p

)−∆

= (logD)−∆EN−1

(
D

p
, sp − 1

)(
sp

sp − 1

)∆

= (logD)−∆

(
1 +

(sp − 1)d

log D
p

)sp−1

(sp − 1)κ̂−κ+1T̂∓(sp − 1)

(
sp

sp − 1

)∆

.

Since

log
D

p
=

(
log D

p

logD

)
logD =

(
sp − 1

sp

)
logD

when D
1
s ≤ p < D

1
τ , we now have(

1 +
(sp − 1)d

log D
p

)sp−1

≤
(
1 +

sp(sp − 1)d−1

logD

)sp−1

≤
(
1 +

sdp
logD

)sp−1



88 Y. SUZUKI

and so

EN−1

(
D

p
,
logD

log p
− 1

)(
log

D

p

)−∆

≤ (logD)−∆

(
1 +

sdp
logD

)sp−1

(sp − 1)κ̂−κ+1T̂∓(sp − 1)

(
sp

sp − 1

)∆

.

Therefore, by writing

q±D(s) :=

(
1 +

sd

logD

)s−1

(s− 1)κ̂−κ+1T̂±(s− 1)

(
s

s− 1

)∆

,

we have

EN−1

(
D

p
,
logD

log p
− 1

)(
log

D

p

)−∆

≤ (logD)−∆q∓D

(
logD

log p

)
.

This gives

(14.13)
∑

12
≤ Ce

√
KV (z)(logD)−∆

∑
D

1
σ ≤p<D

1
τ

ω(p)
V (p)

V (z)
q∓D

(
logD

log p

)
.

We use Lemma 8.6. We need to check q∓D(t)t
κ is decreasing for τ ≤ t ≤ σ. Since

(14.14) q∓D(t)t
κ =

(
1 +

td

logD

)t−1

(t− 1)κ̂+1T̂∓(t− 1)

(
t

t− 1

)κ+∆

,

it suffices to show (
1 +

td

logD

)t−1

(t− 1)κ̂+1T̂∓(t− 1)

is decreasing. For the later necessity, we consider a bit more general function

Λ±
ε (t) :=

(
1 +

(t+ ε)d

logD

)t
tκ̂+1T̂±(t) for t > 0 and ε = 0, 1.

Note that

Λ∓
1 (t− 1) =

(
1 +

td

logD

)t−1

(t− 1)κ̂+1T̂∓(t− 1)

and so, by recalling (14.14), we have

(14.15)

Λ∓
1 (t− 1)

(
t

t− 1

)κ+∆

=

(
1 +

td

logD

)t−1

(t− 1)κ̂+1T̂∓(t− 1)

(
t

t− 1

)κ+∆

= q∓D(t)t
κ.

Claim 14.6. Assume that D is sufficiently large in terms of κ and ∆.

(i) For ε = 0, 1, the function Λ±
ε (t) is decreasing for t ∈ [β̂ + ε±, σ].

(ii) The function q∓D(t)t
κ is decreasing for t ∈ (β + ε±, σ].

(iii) For s ∈ [β + ε±, σ], we have∫ σ

s

q∓D(t)dt
κ <

(
1− 1

σ

)1−∆

Λ±
0 (s).
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Proof. We first prepare an estimate of the derivative (Λ±
ε (t))

′. For t > 0, we have((
1 +

(t+ ε)d

logD

)t)′

=

(
1 +

(t+ ε)d

logD

)t(
t log

(
1 +

(t+ ε)d

logD

))′

=

(
1 +

(t+ ε)d

logD

)t(
log

(
1 +

(t+ ε)d

logD

)
+
dt(t+ ε)d−1

1 + (t+ε)
d

logD

1

logD

)

≤
(
1 +

(t+ ε)d

logD

)t(
log

(
1 +

(t+ ε)d

logD

)
+ d

(t+ε)
d

logD

1 + (t+ε)
d

logD

)
.

Since

log(1 + x) =

∫ 1+x

1

du

u
≥ 1

1 + x

∫ 1+x

1

dt =
x

1 + x
for x ≥ 0,

we further have

(14.16)

((
1 +

(t+ ε)d

logD

)t)′

≤ (d+ 1)

(
1 +

(t+ ε)d

logD

)t
log

(
1 +

(t+ ε)d

logD

)
for t > 0. We then consider the range t > β̂ + ε±. In this range,

(tκ̂+1T̂±(t))′ = −κ̂tκ̂T̂∓(t− 1).

Thus, by differentiating and using (14.16), we have

(Λ±
ε (t))

′

=

((
1 +

(t+ ε)d

logD

)t
tκ̂+1T̂±(t)

)′

=

(
1 +

(t+ ε)d

logD

)t
(tκ̂+1T̂±(t))′ +

((
1 +

(t+ ε)d

logD

)t)′

tκ̂+1T̂±(t)

≤ −κ̂
(
1 +

(t+ ε)d

logD

)t
tκ̂T̂∓(t− 1)

+ (d+ 1)

(
1 +

(t+ ε)d

logD

)t
tκ̂+1T̂±(t) log

(
1 +

(t+ ε)d

logD

)
= −κ̂

(
1 +

(t+ ε)d

logD

)t
tκ̂T̂∓(t− 1)

(
1− d+ 1

κ̂

tT̂±(t)

T̂∓(t− 1)
log

(
1 +

(t+ ε)d

logD

))
.

By using (i), (iii) of Proposition 13.1 in the form

tT̂±(t)

T̂∓(t− 1)
�
(
t− 1

t

)κ̂+1
1

log et
� 1

log et
,

we have

(14.17) (Λ±
ε (t))

′ ≤ −κ̂
(
1 +

(t+ ε)d

logD

)t
tκ̂T̂∓(t− 1)

(
1 +R±

ε (t)
)

for t > β̂ + ε±

with

R±
ε (t) �

1

log et
log

(
1 +

(t+ ε)d

logD

)
.

We now prove the claim.
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(i). When t ≤ (logD)
1
2d , we have

R±
ε (t) �

(t+ ε)d

logD
� logD− 1

2 � (log logD)−
1
2 .

When (logD)
1
2d < t ≤ σ, we have

R±
ε (t) �

log(1 + (log logD)d)

log logD
� (log logD)−

1
2 .

Thus, in any case, we have

(Λ±
ε (t))

′ ≤ −κ̂
(
1 +

(t+ ε)d

logD

)t
tκ̂T̂∓(t− 1)

(
1 +O((log logD)−

1
2 )
)
.

Thus, for D is sufficiently large in terms of κ and ∆, we have

(Λ±
ε (t))

′ < 0.

This shows that Λ±
ε (t) is decreasing for t ≥ β̂ + ε±.

(ii). By (14.15) and the above proven (ii), q∓D(t)t
κ is decreasing for t ∈ [β̂+ε∓+1, σ].

Thus, it thus suffices to consider the range t ∈ (β + ε±, β̂ + ε∓ + 1]. In this range,

we have t− 1 ∈ (β + ε∓, β̂ + ε∓] and so (t− 1)κ̂+1T̂∓(t− 1) is constant. Therefore,
it suffices to show (

1 +
td

logD

)t(
t

t− 1

)κ+∆

is decreasing for t ∈ (β+ε±, β̂+ε∓+1]. By taking the derivative and using (14.16),((
1 +

td

logD

)t(
t

t− 1

)κ+∆)′

=

(
1 +

td

logD

)t((
t

t− 1

)κ+∆)′

+

((
1 +

td

logD

)t)′(
t

t− 1

)κ+∆

= − κ+∆

(t− 1)2

(
1 +

td

logD

)t(
t

t− 1

)κ+∆−1

+ (d+ 1)

(
1 +

td

logD

)t(
t

t− 1

)κ+∆

log

(
1 +

td

logD

)
= −κ+∆

t2

(
1 +

td

logD

)t(
t

t− 1

)κ+∆+1

+ (d+ 1)

(
1 +

td

logD

)t(
t

t− 1

)κ+∆

log

(
1 +

td

logD

)
= −κ+∆

t2

(
1 +

td

logD

)t(
t

t− 1

)κ+∆+1(
1 +O

(
td+1(t− 1)

logD

))
< 0

If D is sufficiently large in terms of κ,∆. This shows (ii).

(iii). When t is sufficiently large in terms of κ, say t ≥ t0(κ,∆), we can show

1 +R±
0 (t) ≥

(
1 +

td

logD

)−1

.
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Indeed, when t0 ≤ t ≤ (logD)
1
d , we have

1 +R±
ε (t) ≥ 1− 1

2
log

(
1 +

td

logD

)
≥ 1− 1

2

td

logD
≥
(
1 +

td

logD

)−1

.

When (logD)
1
d < t ≤ σ, we instead have

1 +R±
ε (t) ≥ 1 +O

(
log(1 + (log logD)d)

log logD

)
≥ 1

2
≥
(
1 +

td

logD

)−1

provided D is sufficiently large. Therefore, by (14.17), we have

(Λ±
0 (t))

′ ≤ −κ̂
(
1 +

td

logD

)t−1

tκ̂T̂∓(t− 1) = −κ̂Λ∓
1 (t− 1)

(
t

t− 1

)κ̂+1
1

t
.

By (14.15), this gives

κq∓D(t)t
κ−1 = κΛ∓

1 (t− 1)

(
t

t− 1

)κ+∆
1

t

≤ −κ
κ̂
(Λ±

0 (t))
′
(
t− 1

t

)κ̂−κ+1−∆

≤ −(Λ±
0 (t))

′
(
t− 1

t

)1−∆

for t ≥ t0.

Therefore, we have (iii) in the range s ≥ t0 as∫ σ

s

q∓D(t)dt
κ ≤ −

∫ σ

s

(Λ±
0 (t))

′
(
t− 1

t

)1−∆

dt

≤ −
(
1− 1

σ

)1−∆ ∫ σ

s

(Λ±
0 (t))

′dt

<

(
1− 1

σ

)1−∆

Λ±
0 (s).

We next consider the range β + ε± ≤ s ≤ t0. By the above proven case, we have∫ σ

t0+2

q∓D(t)dt
κ <

(
1− 1

σ

)1−∆

Λ±
0 (t0 + 2)

=

(
1− 1

σ

)1−∆(
1 +

(t0 + 2)d

logD

)t0+2

(t0 + 2)κ̂+1T̂±(t0 + 2).

By (iii) of Proposition 13.1, we then obtain∫ σ

t0+2

q∓D(t)dt
κ �

(
1− 1

σ

)1−∆
1

(t0 log et0)
2

(
1 +

(t0 + 2)d

logD

)t0+2

tκ̂+1
0 T̂±(t0)

�
(
1− 1

σ

)1−∆
1

(t0 log et0)
2

(
1 +

(t0 + 2)d

logD

)t0+2

sκ̂+1T̂±(s)

When D is sufficiently large in terms of κ,∆, t0, we thus have∫ σ

t0+2

q∓D(t)dt
κ � 1

t20

(
1− 1

σ

)1−∆

sκ̂+1T̂±(s).
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By (14.2) as we made available by choosing δ small, we have∫ t0+2

s

q∓D(t)dt
κ = κ

∫ t0+2

s

(
1 +

td

logD

)t−1

(t− 1)κ̂+1T̂∓(t− 1)

(
t

t− 1

)κ+∆
dt

t

≤
(
1 +

(t0 + 2)d

logD

)t0+1

κ

∫ t0+2

s

(
t− 1

t

)1−∆

tκ̂T̂∓(t− 1)dt

≤
(
1− 1

t0 + 2

) 1
2 (∆0−∆)(

1 +
(t0 + 2)d

logD

)t0+1

× κ

∫ t0+2

s

(
t− 1

t

)1−∆0+
1
2 (∆0−∆)

tκ̂T̂∓(t− 1)dt

≤
(
1− 1

t0 + 2

) 1
2 (∆0−∆)(

1 +
(t0 + 2)d

logD

)t0+2

sκ̂+1T̂±(s).

When D is sufficiently large in terms of κ,∆, t0, we thus have∫ t0+2

s

q∓D(t)dt
κ ≤

(
1− 1

σ

)1−∆(
1− 1

t0 + 2

) 1
3 (∆−∆0)

(
1 +O

(
1

t20

))
sκ̂+1T̂±(s)

since (
1− 1

t0 + 2

) 1
6 (∆−∆0)

≥ 1− 1

t0 + 2
≥ 1− 1−∆

σ
≥
(
1− 1

σ

)1−∆

.

By combining the above estimates, we obtain∫ σ

s

q∓D(t)dt
κ ≤

(
1− 1

σ

)1−∆

sκ̂+1T̂±(s)

{(
1− 1

t0 + 2

) 1
3 (∆−∆0)

+O

(
1

t20

)}
≤
(
1− 1

σ

)1−∆

sκ̂+1T̂±(s)

{
1− 1

3

∆−∆0

t0 + 2
+O

(
1

t20

)}
≤
(
1− 1

σ

)1−∆

sκ̂+1T̂±(s) ≤
(
1− 1

σ

)1−∆

Λ±
0 (s)

by replacing t0 large enough in terms of κ,∆. This proves (iii) for all s ≥ β+εN . □

By (ii) of Claim 14.6, we can apply Lemma 8.7 to (14.13). This gives∑
12

≤ Ce
√
KV (z)(logD)−∆

(∫ σ

s

q∓D(t)
dtκ

sκ
+

3(κ+ 1)K2q∓D(τ)

logD
1
σ

(
τ

s

)κ)
.

By (iii) of Claim 14.6, this gives
(14.18)∑

12

≤ Ce
√
KV (z)(logD)−∆

×
((

1− 1

σ

)1−∆

s−κΛ±
0 (s) +

3(κ+ 1)K2q∓D(τ)

logD
1
σ

(
τ

s

)κ)
≤ Ce

√
KV (z)(logD)−∆

×
((

1− 1

σ

)1−∆(
1 +

sd

logD

)s
sκ̂−κ+1T̂±(s) +

3(κ+ 1)K2q∓D(τ)

logD
1
σ

(
τ

s

)κ)
.
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By (14.15) and (iii) of Proposition 13.1, we have

q∓D(τ)

logD
1
σ

(
τ

s

)κ
=

σ

logD

(
1 +

τd

logD

)τ−1

(τ − 1)κ̂+1T̂±(τ − 1)

(
τ

τ − 1

)κ+∆

s−κ

� σ2 log eσ

(logD)

(
1 +

τd

logD

)τ
τ κ̂+1T̂±(τ)

(
τ

τ − 1

)κ+∆

s−κ

� σ2 log eσ

(logD)

(
1 +

sd

logD

)s
sκ̂−κ+1T̂±(s)

(
τ

τ − 1

)κ+∆

.

by the monotonicity of tκ̂+1T̂±(t) and τ = s when s ≥ 2. By (14.11), we have(
τ

τ − 1

)κ+∆

=

(
τ

τ − 1

)κ(
τ

τ − 1

)∆

≤
(

τ

τ − 1

)κ(
logD

log 2

)∆

� (logD)1−(∆0−∆)

and so

K2 q
∓
D(τ)

logD
1
σ

(
τ

s

)κ
� K2σ3 log eσ

σ(logD)∆0−∆

(
1 +

sd

logD

)s
sκ̂−κ+1T̂±(s)

� 1

log logD

1

σ

(
1 +

sd

logD

)s
sκ̂−κ+1T̂±(s)

since
2

ΘK
+

3

d
< ∆0 −∆.

as in (14.4). On inserting this estimate into (14.18), we obtain

(14.19)

∑
12

≤ Ce
√
KV (z)EN (D, z)(logD)−∆

×
((

1− 1

σ

)1−∆

+O

(
1

log logD

1

σ

))
.

This completes the estimate of
∑

12.
We next consider the sum ∑

0
= TN (D,D

1
σ ).

For this sum, we can use Claim 14.5 with z = D
1
σ to obtain∑

0
� V (D) · 1

logD

e
√
K

σ
EN (D,σ)(logD)−∆.

When s ≥ β̂ + ε±, by (ii) of Claim 14.6, we have

EN (D,σ) = σ−κΛ±
0 (σ) ≤ σ−κΛ±

0 (s) ≤ EN (D, s).

When β + εN ≤ s ≤ β̂ + ε±, we also have

EN (D,σ) = σ−κΛ±
0 (σ) ≤ σ−κΛ±

0 (β̂ + ε±) � σ−κΛ±
0 (s) ≤ EN (D, s).

We therefore have

(14.20)
∑

0
� V (z) · 1

logD

e
√
K

σ
EN (D, s)(logD)−∆
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since σ ≥ s in the current case. This completes the estimate of
∑

0.
We then consider the sum∑

2
=

∑
D

1
τ ≤p<z

ω(p)TN−1

(
D

p
, p

)
.

This sum is indeed empty unless D
1
τ = min(z,D/2) = D/2. We thus may assume

D
1
s = z > D/2 = D1− log 2

log D

and so

(14.21) β + εN ≤ s <
1

1− log 2
logD

≤ 2

assuming D ≥ 4. This happens only if N is even. Also, since

β > 1 if κ >
1

2
,

this situation happens only if κ ≤ 1
2 for large D ≥ D(κ). Thus, we may assume

min(z,D/2) = D/2, the bound (14.21) holds, N is even and κ ≤ 1
2 . Also, if

D/2 ≤ p, we have D/p ≤ 2. Therefore, the summation condition p1 ·p
β
1 < D makes

Vn

(
D

p
, p

)
= 0 for odd n with 3 ≤ n ≤ N − 1.

Therefore, we have ∑
2
=

∑
D/2≤p<z

ω(p)V1

(
D

p
, p

)
.

For D/2 ≤ p, we further have

0 ≤ V1

(
D

p
, p

)
=

∑
(D/p)

1
β+1 ≤q<p

ω(q)V (q) =
∑
q<p

ω(q)V (q) = 1− V (p) ≤ 1.

Therefore, we have∑
2
≤

∑
D/2≤p<z

ω(p) ≤
∑

D/2≤p<z

log(1− ω(p))−1 = log
V (D2 )

V (z)
.

Since ω ∈ Ω(κ,K), by using (14.21) and s ≥ β + εn ≥ 1, we have∑
2
≤ κ log

log z

logmax(2, D2 )
+ log

(
1 +

K

logmax(2, D2 )

)
≤ κ log

log z

log D
2

+ log

(
1 +

K

log D
2

)
≤ κ log

(
1− log 2

logD

)−1

+
K

logD
� K

logD

provided D ≥ 4. Since κ ≤ 1
2 and s ≥ 1, we have

V (z)−1 � K(logD)κ ≤ K(logD)
1
2 = K(logD)1−∆0

By recalling s ≤ 2 by (14.21), we arrive at∑
2
� K(logD)−1 = V (z)KV (z)−1(logD)−1 � K2T̂−(s)(logD)−∆0
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and so

(14.22)

∑
2
� V (z) ·K2T̂±(s)(logD)−∆0

= V (z) ·K2T̂±(s)(logD)−∆(logD)−(∆0−∆)

� V (z) · 1

log logD

e
√
K

σ
EN (D, z)(logD)−∆.

This completes the estimate of
∑

2.
By (14.9), (14.10), (14.12), (14.19), (14.20) and (14.22), we have

(14.23)

TN (D, z)

≤ V (z)

{
TN (s) +

Ce
√
KEN (D, z)

(logD)∆

((
1− 1

σ

)1−∆

+O

(
1

log logD

1

σ

))}
.

Since (
1− 1

σ

)1−∆

+O

(
1

log logD

1

σ

)
≤ 1− 1−∆

σ
+O

(
1

log logD

1

σ

)
< 1

for sufficiently large C1, we obtain the assertion for the N -th case.

Case II. When β − 1 < s ≤ β + 1, logD ≥ C1K
ΘK and N is odd. In this case,

(14.24) TN (D, z) = TN (D,D
1

β+1 ) + V1(D, z)

We apply the above proven (14.23) to TN (D,D
1

β+1 ) to obtain

TN (D,D
1

β+1 )

≤ V (D
1

β+1 )

×
{
TN (β + 1) +

Ce
√
KEN (D,D

1
β+1 )

(logD)∆

((
1− 1

σ

)1−∆

+O

(
1

log logD

1

σ

))}
.

Since ω ∈ Ω(κ,K), by using Lemma 13.2, we have
(14.25)

V (D
1

β+1 )TN (β + 1)

≤ V (z)

((
β + 1

s

)κ
TN (β + 1) +

K

logD

(β + 1)κ+1

sκ
TN (β + 1)

)
≤ V (z)

((
β + 1

s

)κ
TN (β + 1) +

K(β + 1)

logD
TN (s)

)
= V (z)

((
β + 1

s

)κ
TN (β + 1) +O

(
1

log logD

e
√
K

σ
EN (D, s)(logD)−∆

))
provided

1

d
< 1−∆

assured by (14.1). We also have

EN (D,β + 1) =

(
1 +

β + 1

logD

)β+1

(β + 1)κ̂−κ+1T̂±(β + 1)

= exp

(
(β + 1) log

(
1 +

β + 1

logD

))
(β + 1)κ̂−κ+1T̂±(β + 1)
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= exp

(
s log

(
1 +

s

logD

)
+O

(
1

logD

))
sκ̂−κ+1T̂±(s)

(
s

β + 1

)κ
≤
(

s

β + 1

)κ
EN (D, s)

(
1 +O

(
1

logD

))
=

(
s

β + 1

)κ
EN (D, s)

(
1 +O

(
1

log logD

1

σ

))
by the monotonicity of sκ̂+1T̂+(s) and have

V (D
1

β+1 ) ≤ V (z)

(
β + 1

s

)κ(
1 +

Ks

logD

)
= V (z)

(
β + 1

s

)κ(
1 +O

(
1

log logD

1

σ

))
since ω ∈ Ω(κ,K) provided

1

ΘK
+

1

d
< 1.

Therefore,

(14.26)

V (D
1

β+1 )
Ce

√
KEN (D,β + 1)

(logD)∆

((
1− 1

σ

)1−∆

+O

(
1

log logD

1

σ

))

≤ V (z)
Ce

√
KEN (D, s)

(logD)∆

((
1− 1

σ

)1−∆

+O

(
1

log logD

1

σ

))
.

By (14.25) and (14.26), we have

(14.27)

TN (D,D
1

β+1 )

≤ V (z)

((
β + 1

s

)κ
TN (β + 1)

+
Ce

√
KEN (D, s)

(logD)∆

((
1− 1

σ

)1−∆

+O

(
1

log logD

1

σ

)))
For V1(D, s), we use (14.8) to obtain

(14.28) V1(D, s) ≤ V (z)

(
T1(s) +O

(
1

log logD

1

σ
EN (D, s)(logD)−∆

))
provided

1

ΘK
+

1

d
< 1−∆.

By combining (14.24), (14.27) and (14.28) and using(
β + 1

s

)κ
TN (β + 1) + T1(s) = TN (s),

which holds since N is odd, we have

TN (D, z) ≤ V (z)

{
TN (s) +

Ce
√
KEN (D, z)

(logD)∆

((
1− 1

σ

)1−∆

+O

(
1

log logD

1

σ

))}
.

Thus, for sufficiently large C1, we obtain the assertion. □
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Lemma 14.7. For D ≥ z ≥ 2, ∆ ∈ (0,∆0) with

∆0 = ∆0(κ) =

{
1 if κ > 1

2 ,

1
2 if 0 < κ ≤ 1

2

and a real number d with

d >
7

∆0 −∆

and ω ∈ Ω(κ,K), we haveV
+(D, z) ≤ V (z)

(
F+(s) + Ce

√
KE(s)(logD)−∆),

V −(D, z) ≥ V (z)
(
F−(s)− Ce

√
KE(s)(logD)−∆)

with the Rosser–Iwaniec weight, where the function E(s) is estimated as

E(s) = exp(−s log s+ s log log 3s+O(s))

for s ≥ 1 and

E(s) = exp(−s log s− s log log 3s+ s log eκ̂)

for 1 ≤ s ≤ (log z)
1
d and the constants δ > 0 and C ≥ 1 depend on κ,∆, d.

Proof. Recall that

(14.29)

V ±(D, z) = V (z)±
∑
n≥1

n≡ν± (mod 2)

Vn(D, z)

= V (z)± lim
N→∞

N≡ν± (mod 2)

TN (D, z).

When 1 ≤ s ≤ (log z)
1
d , we have(

1 +
sd

logD

)s
≤ exp

(
sd+1

logD

)
= exp

(
sd

log z

)
≤ e

and so the assertion follows by Lemma 14.4 and (ii) of Proposition 13.1. When

s ≥ (log z)
1
d , i.e. s ≥ (logD)

1
d+1 , we use Lemma 14.3. Since ω ∈ Ω(κ,K), we have

V (z) � K(logD)κ = exp(O(logK + log logD)) = exp(O(logK + log s))

We also have

L � log logD + logK � logK + log 3s = (log 3s)

(
1 +

logK

log 2s

)
.

Therefore, Lemma 14.3 gives

(14.30)

TN (D, z)

≤ V (z)(logD)−∆

× exp

(
−s log s+ s log log 3s+O

(
s+

s logK

log 2s
+ logK

))
≤ e

√
KV (z)(logD)−∆ exp(−s log s+ s log log 3s+O(s))
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since if s ≤ K
1
3 , we have

s logK

log 2s
+ logK � K

1
3 logK

and if s ≥ K
1
3 , we have

s logK

log 2s
+ logK � s.

On inserting (14.30) into (14.29), we obtain the assertion even for this case. □

Theorem 14.8. Consider

• A sieve data (A,P, z,X, ω, r) such that ω ∈ Ω(κ,K) with κ > 0,K ≥ 2.
• A level of weight D ≥ z ≥ 2.
• A real number ∆ ∈ (0,∆0) with

∆0 = ∆0(κ) =

{
1 if κ > 1

2 ,

1
2 if 0 < κ ≤ 1

2

and a real number d with

d >
7

∆0 −∆
.

We then have

S(A,P, z) ≤ XV (z)
(
F+(s) + Ce

√
KE(s)(logD)−∆)+R+(D, z)

S(A,P, z) ≥ XV (z)
(
F−(s)− Ce

√
KE(s)(logD)−∆)+R−(D, z)

with
R±(D, z) :=

∑
d<D
d|P (z)

λ±(d)r(d),

where the function E(s) is estimated as{
E(s) = exp(−s log s+ s log log 3s+O(s)) for s ≥ 1

E(s) = exp(−s log s− s log log 3s+ s log eκ̂) for 1 ≤ s ≤ (log z)
1
d

and the constants δ > 0 and C ≥ 1 depend on κ,∆, d.

Proof. It suffices to combine Lemma 3.3 with Lemma 14.7. □

15. Simplest applications to twin prime problem

We check the power of Theorem 14.8 by applying it to twin prime problem.

15.1. Sieving n(n+ 2). Let X ≥ 4 be a real number and let

A := {n(n+ 2) | 1 ≤ n ≤ X}.
As the sifting set, we use the set of all primes:

P := {p : prime}.
For a square-free d, we clearly have

|Ad| =
∑
n≤X

n(n+2)≡0 (mod d)

1 = ω(d)X + r(d),
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where

ω(d) :=
ρ(d)

d
, ρ(d) := #{x (mod d) | x(x+ 2) ≡ 0 (mod d)}

and
|r(d)| ≤ ρ(d).

By the Chinese remainder theorem, we have

ρ(p) =

{
1 if p = 2,
2 if p ≥ 3.

By Mertens’ theorem, for 2 ≤ w ≤ z, we get

V (w)

V (z)
=

∏
w≤p<z

(
1− ρ(p)

p

)−1

= exp

( ∑
w≤p<z

log

(
1− ρ(p)

p

)−1)

= exp

( ∑
w≤p<z

ω(p)

p
+O

(
1

w

))

=

(
1 +O

(
1

logw

))(
log z

logw

)2

.

Namely, we have ω ∈ Ω(κ,K) with κ = 2 and a suitable K ≥ 2. We then apply

the lower bound given in Theorem 14.8. To this end, we calculate F−(s) for small
s. Since κ = 2 now, the parameter β is determined by β = ρ + 1 with the largest
zero ρ of r2,2(s). By Proposition 10.8, we know that

r2,2(s) = s3 − 6s2 + 9s− 8
3

and so
ρ = 3.8339865967 . . . ∈ (3.8, 3.85) and β ∈ (4.8, 4.85).

By Proposition 11.8 with β = ρ+ 1, we have

A > 0 and B = 0.

By Proposition 9.4, we have

s2T−(s) = s2 − 2A

∫ s

β

t

(t− 1)2
dt for β ≤ s ≤ β + 2

and so

F−(s) = 1− T−(s) =
2A

s2

∫ s

β

t

(t− 1)2
dt > 0 for β < s ≤ β + 2.

(Since T−(s) is decreasing, we have F−(s) > 0 for s > β.) We thus take

D = (X + 2)
485
490 and z = D

1
4.85 = (X + 2)

1
4.90

which gives

s =
logD

log z
= 4.90 ∈ (β, β + 1).

We also have

R−(D, z) �
∑
d<D

ρ(d)
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≤ D
∑
d<D

ω(d)

≤ D
∏
p<D

(1− ω(p))−1

� D(logD)2

� X
485
490 (logX)2.

Thus, by Theorem 14.8, we have

S(A,P, z) ≥ cXV (z)− c′X
485
490 (logX)2

with some c, c′ > 0 provided X is sufficiently large. Finally, we have

V (z) �
(
V (2)

V (z)

)−1

� (log z)−2 � (logX)−2,

we obtain

S(A,P, z) � X(logX)−2.

When n(n+ 2) is counted in S(A,P, z), we have

zΩ(n) ≤ n ≤ X + 2 and zΩ(n+2) ≤ n+ 2 ≤ X + 2

and so

max(Ω(n),Ω(n+ 2)) ≤ 4.9.

Since the left hand side is integer, we get

max(Ω(n),Ω(n+ 2)) ≤ 4.

Namely, we obtained the following result:

Theorem 15.1. There are infinitely many pairs (n, n+ 2) of 4-almost primes.

15.2. Sieving p+ 2. Let X ≥ 4 be a real number and let

A := {p+ 2 | 1 ≤ p ≤ X}.

As the sifting set, we use the set of all odd primes:

P := {p : odd prime}.

For a square-free d, we clearly have

|Ad| =
∑
p≤X

p≡−2 (mod d)

1 = ω(d)π(X) + r(X; d,−2),

where

ω(d) :=
1

φ(d)
.

By the Bombieri–Vinogradov theorem, we have∑
d<D

|r(X; d,−2)| � X(logX)−3

provided

D ≤ X
1
2−ε for ε > 0.
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By Mertens’ theorem, for 2 ≤ w ≤ z, we get

V (w)

V (z)
=

∏
w≤p<z
p>2

(
1− 1

φ(p)

)−1

= exp

( ∑
w≤p<z
p>2

log

(
1− 1

φ(p)

)−1)

= exp

( ∑
w≤p<z
p>2

1

p− 1
+O

(
1

w

))

=

(
1 +O

(
1

logw

))(
log z

logw

)
.

Namely, we have ω ∈ Ω(κ,K) with κ = 1 and a suitable K ≥ 2. We then apply

the lower bound given in Theorem 14.8. To this end, we calculate F−(s) for small
s. Since κ = 2 now, the parameter β is determined by β = ρ + 1 with the largest
zero ρ of r1,1(s). By Proposition 10.8, we know that

r1,1(s) = s− 1

and so

ρ = 1 and β = 2.

By Proposition 11.8 with β = ρ+ 1, we have

A > 0 and B = 0.

By Proposition 9.4, we have

sT−(s) = s−A

∫ s

2

dt

t− 1
for 2 ≤ s ≤ 4

and so

F−(s) = 1− T−(s) =
A

s

∫ s

2

dt

t− 1
> 0 for 2 < s ≤ 4.

(Since T−(s) is decreasing, we have F−(s) > 0 for s > β.) We thus take

D = (X + 2)
21
43 ≤ X

1
2−ε and z = D

1
2.1 = (X + 2)

1
4.3

which gives

s =
logD

log z
= 2.2 ∈ (2, 3).

We also have

R−(D, z) ≤
∑
d<D

|r(X; d,−2)| � X(logX)−3.

Thus, by Theorem 14.8, we have

S(A,P, z) ≥ cπ(X)V (z)− c′X(logX)−3

with some c, c′ > 0 provided X is sufficiently large. Finally, we have

V (z) �
(
V (2)

V (z)

)−1

� (log z)−1 � (logX)−1,
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we obtain
S(A,P, z) � X(logX)−2.

When p+ 2 is counted in S(A,P, z), we have

zΩ(p+2) ≤ p+ 2 ≤ X + 2

and so
Ω(p+ 2) ≤ 4.3.

Since the left hand side is integer, we get

Ω(p+ 2) ≤ 4.

Namely, we obtained the following result:

Theorem 15.2.
There are infinitely many primes p for which p+ 2 is a 4-almost prime.
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