THE ROSSER-IWANIEC SIEVE

YUTA SUZUKI

CONTENTS

Cast of characters — the sieve data -

‘1'he FEratosthenes—l.egendre sievq

pleve welghtg

‘1'he tundamental 1dentity

Preparatory lemmas for combinatorial sieveg
hosser’s weight|

Recurrence relation tor V, (z)

Partial summation with w(p)V (p)

Heuristic approximation ot V, (LD, z)

U. Delay difterential equation

1. Convergence problem

2. Optimal choice of j
| 3. The error majorants TE(SI

1L4.  Completion ol the proot of the hosser—Iwaniec sievq

Lo. Simplest applications to twin prime problem|
RBeferenced

[ EFEPEERF F A

N R 0N

13
17
23
58
70
72
79
98

102

In this note, we shall develop the theory of the Rosser—Iwaniec sieve following

[, Chapter 11], [?, Chapter 4] and [4].
1. CAST OF CHARACTERS — THE SIEVE DATA —

We first introduce our setting of sieve problem.

Definition 1.1 (Sieve data). A sieve data is a tuple
(A, Pz, X,w,r)
of
A finite sequence of integers A called the sifting sequence.
A set of prime numbers P called the sifting set.
A real number z > 2 called the level of sieve.

A real number X > 0 used as an approximation of |.A|.
A multiplicative function w(d) called the density function satisfying

0 <w(p) <1 forall prime p
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9 Y. SUZUKI

and
(1.1) p¢€P = w(p) =0.

e An arithmetic function r(d).
satisfying the local condition
(1.2) Vd | P(z), |A4]=w(d)X +r(d),
where P(z) is defined by
P(z)=]]»
pEP
p<z
and A, is the subsequence defined by
A;j={a€ Ala=0 (mod d)} fordeN.

As a convention, |A4,4| counts with the multiplicities of elements in A.

Definition 1.2 (Sieve function). For a sieve data
(A’ ’P7 Z’ X’ w? r)?
we define the sieve function S(A, P, z) by
(13) S(A,P,Z) = Z L,
acA
(a,P(2))=1

where we count the multiplicities of elements in A.

The main aim of sieve theory is to estimate the sieve function
S(A,P,z)

for a given sieve data (A, P, z, X,w,r).

2. THE ERATOSTHENES—LEGENDRE SIEVE

We now see how the setting of BecfionTl is used in the development of sieves
by reviewing the Eratosthenes—Legendre sieve. The basis of this sieve is the
well-known formula

@ Su@={ g sy
d|n

Theorem 2.1 (The Eratosthenes—Legendre sieve). For a sieve data
(A, Pz, X, w,7r),
we have
S(A,P,z) =XV (z)+ R,
where

V(z) = Z p(d)w(d) and R = Z p(d)r(d).

d|P(2) d|P(2)
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Proof. On inserting (ET0) into (I=3), we can calculate S(A, P, z) as
SAP =) > pd)= Y ud)]Aq-
acAd|(a,P(2)) d|P(z)

On inserting (2) into this equation, we obtain the theorem. (]

By recalling (IT) and expaning the product, we can express V(z) as

V(z) = [T -w)).
<z
However, for practical applications, the power of the Eratosthenes—Legendre sieve
is limited since the remainder term R is a sum taken over very long range of d.

3. SIEVE WEIGHTS

In order to control the remainder term, we replace the M&bius function p(d) by
some arithmetic function mimicking p(d) with smaller support. By recalling the
proof of the Eratosthenes—Legendre sieve, we find that it suffices to consider the
arithmetic function defined and mimicking u(d) over divisors d | P(z). Hence we
define lower and upper sieve weights as follows:

Definition 3.1 (Weight data). A weight data (P, D, z) is a triple of
e A set of primes P.
e Real numbers D and z with D > z > 2.

We call P the sifting set as before, D the level of support and z the
sifting level. As in Definifion 11, we let

Piz)=]]»

pEP
p<z

for a given weight data.

Definition 3.2 (Sieve weight). For a weight data (P, D, z), two arithmetic func-
tions A~ (d) and A" (d) defined for d | P(z) are called a lower bound sieve
weight and an upper bound sieve weight, respectively, for the weight data
(P7 D7 Z)? if
(i) The lower and upper bound condition

(3.1) DA <D p(d) <D NT(d)

d|N dIN dIN

holds for every N | P(z).
(ii) The support condition

(3.2) d>Dandd| P(z) = A5(d)=0

holds.

We prepare the following general overture of sieve machinery.

Lemma 3.3 (Sieve lemma). Consider
e A sieve data (A, P,z, X,w,r).
e A weight data (P, D, z).




4 Y. SUZUKI

e Upper and lower sieve weights A\*(d) for the weight data (P, D, z).
Then, we have
XV (2)+ R (D,2) < S(A,P,2) < XVT(2) + RT(D, 2),
where
Vi) =VH(AD,2)= Y A (d
d|P(2)
R*(D,2)=R*(A,D,z)= > X\(d

d|P(z)
d<D

Proof. By (), as in the proof of the Erastosthenes—Legendre sieve,
SAP=> > w
a€Ad|(a,P(z))
Since (a, P(z)) | P(z), Definifion 32 implies
Y Y vwssuracy Y
a€Ad|(a,P(z)) acAd|(a,P(2))
By changing the order of summation,
D 2 N@= 3 M@
acAd|(a,P(z)) d|P(z)

By substituting (I2) and checking the support of A (d), we arrive at the lemma.
O

4. THE FUNDAMENTAL IDENTITY

Let us fix a weight data (P, D, z) and try to construct a sieve weight for (P, D, z).
Let (pg) be a sequence of complex numbers defined for d | P(z). In principle, this
sequence is thought as an indicator function of some condition on the variable d and
50 (pg) is usually defined to take 0 or 1 as its values. In this note, if a square-free
integer d with d | P(z) is given, we use the following expression

(41) d:p1p2'”pr7 Z>p1 >pP2 > > Dy p17p27"'7p7"€7)a TZO

even without special mention. By using this notation, we define

(4.2) Oq = H Ppyp, ifd>2 and oy =1
1<i<r
and
(4.3) Ga=0=pp.p) [ Porow, fd>2 and 7 =0
1<i<r

For some sequence (p,) with some superscripts, e.g. (pi ), we denote the associated
o4 by attaching the same type of superscripts, e.g. U(:it.

We use the function o, for the truncation of Mobius function, i.e. we replace the
Mbobius function u(d) by A(d) = p(d)og. Thus, we consider

(4.4) > u(d)oy

d|n
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instead of (E1). The difference between (1) and (E4) can be seen in
(4.5) D ou(d) =" p(d)og+ Y pd)(1 - 0y),
d|n d|n d|n

in which we try to “trash” the second term on the right-hand side by using some
property of o4. In order to use the decomposition (E3), we take closer look at the
“negated indicator function” (1 — oy).

In the following explanation, we think p; or o4 as indicator functions and we
identify the indicator function and the associated condition. We recall that the
condition o, is the conjunction of the conditions

ppl’ pP1P2’ pPlPQPs’ pplePaPzL’ Tt ppl'“Pr’
which may be expressed as

Py N Ppips N Ppipaps N Poipapsps N N Ppyoop, -
Its negation is, by the de Moivre rule, given by a disjunction

(2Pp, )V (5Pp1p,) V (P01 ppg) V (TPpipapps) VoV (TPpyp,)-
Let us read these conditions from left, i.e. we call the condition (—p, ..., ) the n-th
condition. Then we classify the possibilities according to which condition is the
first condition failing to hold. Since this classification is disjoint, we can rewrite
the above condition by the disjoint disjunction of the conditions
Ppy N N Ppyp N (TPpyp,)-
Each of the last conditions can be expressed in terms of the indicator function as
(1= pp,-p,,) H Ppypi = Opyop,,
1<i<n

Therefore, in principle, we arrive at the decomposition

D1 Pn

or, by using our convention ; = 0, we have
l—0y4= Z [
0<n<r
We introduce two symbols
DPmin(d) = min{p: prime factor of d}, py.(d) = max{p: prime factor of d}
with conventions p,,;,(1) = 400 and ppa, (1) = 0. Then, we can write

].*O'd: Z Edl'

dydy=d
Pmin (d1)>Pmax (d2)

This is our fundamental decomposition. Our above argument is rather informal
nature, so we shall give a more formal proof of the above identity.

Lemma 4.1. Let (P, D, z) be a weight data. For d | P(z), we have

l—04= Z g, -

dydy=d
Prin (A1) >Pmax(d2)
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Proof. By the convention &, = 0, the right-hand side above is

Z adl = Z UPl"'Pw,'

dydy=d 1<n<r
Pmin(d1)>Pmax (dz)

By recalling the definition (E=3), this is

= Z (1= pp,p.) H Ppy-p;

1<n<r 1<i<n
= § : ( H Ppy--p; — H pmmpl)
1<n<r \1<i<n 1<i<n
= z : H pP1“'Pi B § : H pPl“'Pi
1<n<r1<i<n—1 1<n<r 1<i<n
= z : H Ppy-p; — § : H Pp,-p;
0<n<r—11<i<n 1<n<r1<in
=1- H Ppy-p; = 1
1<i<r
This completes the proof. (I

The decomposition given in Cemma 2 can be used to prove various identities
used in combinatorial sieves. We prepare rather general identity.

Lemma 4.2 (Fundamental identity). Let (P, D,z) be a weight data. For any
divisor N | P(z) and any arithmetic function f(d) defined for d | P(z),

(4.6) DY fdog=) fld)=> 74 Y flde).
d|N d|N dIN  el(N,P(Pmin(d)))
In particular, if f(d) is multiplicative, we have

(4.7) S dog= Y fd)=> fdzs D>, fle).

d|N d|N d|N e|(N,P(Pmin(d)))

Proof. We have
> fdog =Y f(d) = fd)(1—0y).
dIN dIN d|N
It suffices to consider the second term of the right-hand side. By Cemma 27T,

Zf )1 —04) Z fdida)T g,

dIN dydy|N
Pmin (d1)>Pmax(d2)

> 7, > f(dydy)
[N

dy|N/dy
Prmin (d1)>Pmax(d2)

> 7, > f(dydy)
d,|N da|(N,P(Prin(dy))

This proves (E8). By the condition pi,(dq) > Pmax(ds), we have (d;,dy) = 1 in
the above summation. Thus, if f(d) is multiplicative, we can rewrite f(d;dy) =
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¥(dy)¥(dy) and arrive at
S H@(1—0g) =Y f(di)7g, > f(dy).

dIN dy|N da| (N, P(Pmin(d1)))

This proves (E27) and completes the proof. O

5. PREPARATORY LEMMAS FOR COMBINATORIAL SIEVES

As we mentioned, we want to “trash” the second term on the right-hand side of
dou(d) = p(d)og+ Y pd)(1 - oy).
d|n d|n d|n
The following lemma carry out such a disposal. Let
vy =1, wv_:=0

so that F1 = (—1)"*.

Lemma 5.1. Let (P,D,z) be a weight data and (p3) be sequences of real
numbers defined for d | P(z) satisfying the condition

+ 1 if v(d) = v= (mod 2),
(5.1) Pa = { Oorl ifv(d) = VI (mod 2).

Then, for every N | P(z), we have

D wdyog <D p(d) <> pd)oy,

d|N d|N d|N

where o is defined by (B, (E2) and (£3) with (p3).

Proof. By taking f(d) = u(d) in (E22), we have

(5.2) Su@or =S pd) - pdwr Y ).

dIN dIN dIN e|(N, P(pmin(d)))
By definition (233) and condition (), we have
0 if v(d) = mod 2),
(5.3) a; = Hwtd) = v )
Oorl ifwv(d)=vrg (mod 2).

Returning to (532), we have

Souldoy = pld) - (D)= T, Y. ple)

d|N d|IN dIN  el(A,P(pmin(d)))
S TUED S D SR
dIN d|N e|(N,P(Pmin(d)))

By (£0), we find that the sum
—+
2.7 ). wle)
dIN  e|(N,P(pmin(d)))

is non-negative. Thus the assertion follows. [
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As we can see in Lemma B33, we need to estimate
VEE) = Y uldw(d)od,
d|P(z)
In particular, we expect that Vi(z) is rather close to
Viz)= Y pldwd) = [T -w).
d|P(z) p<z

As for this purpose, we prepare the following lemma.

Lemma 5.2. Let g(d) be a multiplicative function, (P, D, z) be a weight data,
and Xi(d) be the functions given in Cemma 5. Then,
VE2) = V(2) £ Y W @FV (Prin(d))-

d|P(z)
v(d)=v4 (mod 2)

Proof. By using the identity (E22) with N = P(z) and f(d) = pu(d)w(d), we have
Vi) = > p(dw(d)oy

d|P(z)
= N w@dwd) — Y wdwdzs Y uew(e)
d|P(z) d|P(z) e|P(Pmin(d))
= V(z) — Z u(d)W(d)EilEV(pmln(d))
d|P(z)
By recalling (B33), this is

d|P(z)
v(d)=v4 (mod 2)

=V(z) + > W(d)7g V (Priin(d))-
d|P(z)
v(d)=v4 (mod 2)

This completes the proof. O

6. ROSSER’S WEIGHT

In this note, we use Rosser’s construction of combinatorial sieves. In order to
develop his method, we need the notion of sieve dimension.
For a given weight data (P, D, z), let us introduce the sifting variable
log D
§ =
log =z

for the logarithmic scale of the level of support relative to the level of sieve. In the
remaining part of this note, we take a parameter 8 > 1 and assume

s> p=>1
Then, we use the sequence (p) defined by

4 _J o if py--pr-p>Dandr=wvy (mod?2),
Ppyp. =

(6.1) .
1 otherwise.
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Then, we immediately find that our p(d)o gives a sieve weight for (P, D, z).

Lemma 6.1. Let (P, D, z) be a weight data, § be a real number with s > 3 > 1,
and define o5 by the sequence (61). Then,

p(djog and p(d)og

are lower and uppwer bound sieve weight for (P, D, z), respectively.

Proof. The upper and lower bound conditions (B) has been already proven in
Cemmah 1. Therefore, it suffices to prove the support condition (B2). We prove
the contraposition Ufit #0=d< D. Assume Udi # 0 and write d as

d:p1p2"'pr7 Z2>Pp1>P2 > > Pry p17p27"'ap7“€7)7 r>0.
If r =0, then we have d =1 < D. If r = 1, then since d | P(z), we have
d=p, <z=D*<D.
If r > 2 and r = v, (mod 2), then we have p; # 0 so that
d=p,-p, <p-ptt < D.
If r > 2 and 7 £ v4 (mod 2), then r — 1 = v; (mod 2) and pzi---mﬂ # 0 so that

1
d=py - p, <pi-piy <D
since p,_; > p, and § > 1. This completes the proof. (Il

The next task is to approximate
VEE) = 3 pdw(d)os
d|P(2)

by the original

d|P(2)
From now on, we assume that the following data is given:
A fixed sifting set P.
A fixed level of sieve D.
A fixed real numbers x > 0 and K > 1.
A fixed density function w € Q(P, s, K).
Rosser’s weight M(d)aff defined by (1) with a real parameter 8 > 1.

unless otherwise specified.

Lemma 6.2. We have

n>1
n=v4 (mod 2)

where

2>p1>>Pp
p1~~-pmpf3n<D (1<m<n, m=n (mod 2))
3
1Py >D
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Proof. By Cemmah? and the convention 7; = 0, it suffices to show
Yo w@agVea@) = > Va2

dP(2) w1
v(d)=vy (mod 2) n=v4 (mod 2)

We first classify the terms by the value of v(d) as

S w@T V@)= D> D w@FV (pmin(d))-
d|P(2) _ n=1 d|P(z)
v(d)=v4 (mod 2) n=vy (mod 2) v(d)=n

By recalling the definition of Ef, we find

n=vy (mod2) = > w(d)Fy V(puin(d) = Va(2).
el

Thus the lemma follows. O

Lemma 6.3. We haven <s—p = V,(z) =0.

Proof. If the sum in (632) is non-empty, then there is (p,...,p,) satisfying
Z>p1 > >Pn
p1~-~pm~p,ﬁn <D (1 <m<n,m=n(mod 2))

Prot P pn > D
Then, the first and the third condition give

B

#=D<ppy <"

so that n > s — 3. Thus, if n < s — 3, then the sum in (6) becomes an empty
sum so that V,,(z) = 0. This completes the proof. O

7. RECURRENCE RELATION FOR V,,(z)

The main goal of the remaining part of this note is to give more satisfactory
analysis on the Rosser-Iwaniec sieve. The aim of this section is to derive some
recurrence formula of V,,(z). Recall V,,(z) defined for a positive integer n by

Z>p1>>Pn
pl.upmp?n<D (1<m<n, m=n (mod 2))
P PaPR>D

as in (B2). In order to describe the result, for a positive integer n, we introduce

0 (if n is even),

1 1 1
— = = min(D*. D% =
Yp = D7 z,.(s) :==min(D*,D ), €En: { 1 (if n is odd).
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Lemma 7.1. For D>1,2>2, s := % and n € N, we have
> wpV(p) ifn=1,
y1Sp<z
Vn(sz) = D
Z w(p)V,_1 (,p) ifn>2ands>pf—¢,.
Yn<P<2z, P

Proof. We first consider the case n = 1. By definition,

(7.1) Vi(D,z) = Z w(p1)V (p1)-

zZ>py
piT'>D

The second summation condition can be rewritten as
K>D = p =D =y,
Then (1) now gives
Vi(D,z) = Z w(p1)V(p1)-

y1<p1<z

This completes the proof for the case n = 1.
We next consider the case n > 2 and n is even. First, we remark that we may
introduce the condition p; > y,, into the summation on the right-hand side of

Z>P1>>Py
p1~~pmp?n<D (1<m<n, m=n (mod 2))
P PP =D

since the original summation condition implies
D<pi - pp <pft" sothat p, > D7 =y,
Thus, we have
(72) Vn(Da Z) = Z w(pl o pn)v(pn)
Yn <p1<2
P1'“Pm,p£3n <D (1<m<n,m=n (mod 2))

p1~--pn,p32D

Then, we again rewrite the summation condition on the right-hand side. Since n is
even, the third condition is rewritten as

Lo PP <D (1<m<n, m=n (mod 2))
= pipP <D (2<m<n, m=n (mod 2))
= po Pl < D/p1 (2<m <n, m=n (mod 2)),

and the fourth condition is rewritten as

Propalh > D = py---puph > D/py.
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Therefore, by (2),

Yn <P1<2
P1>>Py

P2 PP <D/py (2<m<n, m=n (mod 2))
PorPaph>D/py

= Z w(pl) Z w(p2 o pn)v(pn)

Yn<p1 <2z 5 P1>P2> 1 >Py
P2 PmPm<D/p1 (2€<m<n, m=n (mod 2))
ParPaph>D/py

Z W(Pl)Vn—1<pD17P1>~

Yn<p1<z

By assuming s > 8 = 3 —¢,,, we have
2,(s) = min(D*, D75 ) = min(D*, D¥) = D* = 2.

Thus we obtain the assertion for the case n > 2 and n is even.
We finally consider the case n > 2 and n is odd. We can again write

Z2>py>>py,
P1PmP <D (1<m<n, m=n (mod 2))
P1-Paph>D

Yn <p1<2
. P1>">Pnp
Pr PPl <D (1<m<n, m=n (mod 2))

P12 D
We then rewrite the third condition as
pL PPl < D (1<m<n, m=n (mod 2))
= pr PP <D (2<m<n, m=n (mod 2)) and pf“ <D
= p2-~~pmpgl <D/py 2<m<n, m=n(mod?2) and p; < D7,
Also, we rewrite the fourth condition as

Therefore, we have

Vn(D’Z) = Z w(pl pn)v(pn)

YnSP1<2,
P1>>Pp

PorPmPon<D/p1 (2<m<n, m=n (mod 2))
B
Do DpPpn>D/p1

Yn<P1<2, P1>Pa> - >p,
Do PP <D/py (2<m<n, m=n (mod 2))
B
P2 PnPn>D/p1

= Z w(p1)Vn-1 (271)1)-

Yn<P1<2,
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This completes the proof. ([

8. PARTIAL SUMMATION WITH w(p)V (p)

We apply partial summation to the recurrence equation obtained in Bection .
For this purpose, we prepare some lemmas on partial summation with

w(P)V(p).

To this end, we introduce the following requirement on w(d):

Definition 8.1 (Density function). A multiplicative function w(d) satisfying
0 <w(p) <1 for all prime p

is called a density function. We denote the set of all density function by Q.
For a set of primes P and a density function w(d), if the condition

pgP = w(p) =0

holds, then we say that w(d) is supported on P. We denote the set of all
density function supported on P by Q(P).

Definition 8.2 (Sieve dimension). We say that a density function w(d) has the
sieve dimension x > 0 with constant K > 2 if

v = T o= (o) (55s) ez ez

wp<z
We denote the set of all density functions of sieve dimension s > 0 supported
on P with constant K > 2 by Q(k, K) = Q(P, &, K).

Lemma 8.3. For z > 1, we have

V(z)=1-> w(p)V(p).

p<z

Proof. We have

We next classify d in the last sum by the value of py, .. (d). Then,

V(i)=14+> > p(dw(d)

p<z d|P(2)
Pmax (d)=p
=1-Y w(p) Y, uldwd) =1=> wp)V(p).
p<z  d|P(p) p<z

This completes the proof. [
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Lemma 8.4. For z > w > 1, we have

V(w)=V(z) ==Y w@Vp) +> w@Vp) = > wp)Vp.

p<w p<z

w<p<z
By dividing both sides by V(z), we obtain
V(w) Vip)
1= > w)
ve T2 e

This completes the proof.

Lemma 8.5. Consider

e Real numbers z,w, D > 2 with w > z and write z = Dé,w - D~
o A real-valued continuous function H(t) ont € [s,0]
Also, define a function E(w, z) by

V(w) (logz
V(z)  \logw

) + E(w,z) forz>w>2.

Then, we have

> w(p)wp)H(logD)

Wi, V(z)  \logp

/H —+E(w z)H(U)-l-/

w

z

Proof. By CLemma 84 and partial summation,
\%4 log D z log D v
i () (5h( 2 )
w<p<z &P w & z<p<z
* log D V(zx)
— H d .
() )
(w /Z V(x) logD
(s)+ V(z )+ w V(2) log x
By recalling the definition of E(w, z), we have

Y wlp) gEZZ’;H(lOgD) = I(w, 2) + By (w, 2),

wp<z Ing

By integrating by parts,

<=
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o log z \ ” #/logz\" log D
I(w,z) := H(S)+<logw> H(U)—l—/w <logx> dH(log:v)

Ei(w,2) = E(w,z)H (o) + /wz E(m,z)dH(ll(;gglx)).

where

For I(w, z), we use integration by parts to obtain

: (logD\ [logz\"
I(w,z)z—/ H(l‘;g )d(logz> .
w gz ) \logx

By changing the variable via

log D

log
we arrive at

logz \" [* log D log D dt
I = — H H(t
(%) <logD> A <logx> <logx /

This completes the proof. O

Lemma 8.6. Consider
e Real numbers z,w, D > 2 with w > z and write z = D%,w = D%.

e A real-valued continuous function H(t) non-negative on t € [s,0].
Assume w € Q(k, K) and H(t)t" is non-increasing for t € [s,c]. Then we have
Vip log D dt (k+1)KH(s

2 “(p)vgi <logp> / Hit 1o)gw =

w<p<z

Proof. Since w € Q(k, K), under the notation of Cemma&H, we have

K log z \ " K [(logz rtl
8.1 E(w,z) < = .
(8:1) (w,2) < log w (logw> log = (logw>
By Cemma™87, it suffices to show
# log D )KH
B, = E(w,2)H (o) +/ Blo, 2)am (082 < (it DEH(s)
w log x log w

By the assumption, H (¢)t" in non-increasing. Thus H () itself is also non-increasing.
Hence, by substituting (8d) with using the positivity and monotonicity of H,

K (1 e K [*/1 L (log D
L < %) H(o)+ 082 gm (287,
log z \ logw logz J,, \logx logz

By integration by parts, we have

z Kk+1
B < KH(s) K H(logD)d(logz) .

log 2z log 2z log x log x

Then we change the variable via
log D

=t.
log
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This gives

o k+1
KH(s) | K [7 . di"™"  KH(s) n+1K/ Hit

log z log z J, ()5"”‘1 ~ logz log z

By, <

Since the function H(¢)t" is non-increasing,

KH(s) (k+1)KH(s)(o—s
E1 = +
log 2 log 2z S
< (k+1)KH(s) (o _ (k+1)KH(s)
- log 2 s) log w ’
This completes the proof. ([

For a technical reason we face later, we modify Cemma X8 so as that the upper
endpoint is not necessarily to be z, the variable of the denominator V(z).

Lemma 8.7. Consider
e Real numbers z,v,w,D > 2 with z > v > w and write
z= D-%,v = D%,w — D=,
e A real-valued continuous function H (t) non-negative on t € (7, 0].
Assume w € Q(k, K) and H(t)t" is non-increasing for t € (7, c]. Then we have

> wy (D) < [ i 3<K+li>gziﬂ<¢><;)i

w<p<v Ing

Proof. By Cemma 88 with z := v, we have
V(p) logDY\  V(v) " V(p) log D
> o) =ve T wopen ()

w<p<v logp w<p<v log p
V(v) 7 dt®  (k+1)KH(T)
< H(t)— 4+ —F——=|.
~ V(z) </T ®) " + log w
Since w € Q(k, K), we have
V(v) \" K
< (- 1 .
V() () ( " 1ogv>
Therefore, we have
V(p) log D
H
> ey (i,

(o) ([ 05+ =2 ()

/H dtﬁ K UH(t)dt:+<1+ K)(“H)KH(T)(TY.

log v log v log w s

1
®7% we have

By the monotonicity of H ()t
K 7 dt” K [° _qdt
HO) S = o | HOE '

logv J,. 5 logv /. S
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< S () (o)
; Woa

log w s

Also, we have
K 3
1+ — <1+ -K<2K
+ log2 — + 2~

1+

log v
since K > 2. Therefore, we have

K (7 dt* (1+ K)(Iﬁ-ﬁ-l)KH(T)(T)H

H(t)s—n—i—

logv /. log v logw s
< kK H(T) (7’)"C N 2k + 1)K H(r) (T)F" < 3(k+1)K*H(r) (T)F"'
— logw S log w s) = log w S
This completes the proof. O

9. HEURISTIC APPROXIMATION OF V,,(D, z)

We now apply Cemma 88 heuristically to guess the behavior of our sum
V,.(D, z).
We recall the recurrence formula

> w@Vp) ifn=1,

y1<p<z

D
Z w(p)Vn1<p,p) ifn>2and s >3 —¢,.

Yn <p<z,
given in Cemma 7 1. We shall approximate V,,(D, z) in the form
Vo (D,z) = V(2)f.(s)
with suitable f,,(s). For n = 1, Cemma R4 with H(¢) = 1 implies

WD) =vE) Y wmi® v at

V(Z) (s,B+1] 87’{

V(D z) =

by ignoring the error term, where the integral is thought to be zero if the integration
range is an empty set. Therefore, our first function f;(s) should be defined as

s"f1(s) = / dt”.
(s,8+1]

anl(Dv Z) ~ V(Z)fnfl(s)
as “the induction hypothesis” and Cemma =83 with H(t) = f,,_;(t — 1) to get

ACEEED SRR )

Yn<p<z,

For general n, we use

SCIPECIE (e

dt
~v() [ =D fors> -2,
(max(s,B+e,),B+n] $
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Therefore, f,,(s) should be defined as

s"f(s) = foo1(t =1)dt™ for s > —¢,.

/(maX(s’B+6n),B+n]

According to the above observations, we define functions f,(s) as follows.
We define a sequence of continuous functions

fl(s)a f2(5)a f3(5)a
recursively as follows. We first prepare the intervals
I, =(—-1,+00) and I_:=][B,+00)

and
B | I, ifnisodd,
In - In(ﬁ) — { I if nis even.

The function f,,(s) will be defined and continuous on I,,. Note that
I, C(0,400) foralln>1
since 8 > 1. The initial function f;(s) is defined on I; by

(9.1) s"f1(s) = / dt”,
(s,8+1]

where in what follows, the integration over empty interval is thought to be zero.
For n > 2, the function f,,(s) is defined on I,, by the recursion

(9.2) She = [ e
(max(s,B+¢,,),8+n]

Our final choice of 8 will satisfy

(9.3) B>1 ifr>1

and so we assume this condition. Under this assumption, the above definition of
(fru)ne is well-defined.

Proposition 9.1.
Functions (f,)n=1 are well-defined by (81) and (832) provided (83).

Proof. Since

I, € (0,+00),
the division by s" in (E), (B2) are legitimate. We prove the assertion and
(9.4) fals) < s forsel,N(0,8] and odd n > 1

with the implicit constant independent of s by the induction on n.

Initial case. For the case n = 1, (E) has no problem and we have

ﬁ@)§<6+1)5

s
for s € I; N (0, 8] and so (&A) holds.
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Recursion step from f,_; to f,, with even n > 2. We should check the integrand
fno1(t — 1) in (B32) is already defined in the previous step and the integral has a
finite value. In the integral of (B2), we have

t—1>max(s,f+¢,) —1=max(s,8)—1>p—1.
Thus, f,_1(t—1) is already defined in the previous step. We next check the integral
foatt-nde = [ (e

(max(s,B+e,),B+n] (max(s,B),8+n]

of (A2) is finite. Since f,,_(t) is continuous on I,,_;, it suffices to check the integral

B+1
/ fnfl(t - 1)dtn
B

around S is finite. By (E32), if 5 > 1, we can simply check the finiteness as
B+1 B+1 dtﬂ B + 1 K
0< 1 (t—1)dt" = < <
[, petemvar < [0 G5 (F51) <+
If 5 =1, by (83), we can still check the finiteness as

B+1 2 tm—l
B 1 (t=1)

since k < 1 if 3 =1 by (B3). Thus, f,(s) is well-defined.

Recursion step from f,,_; to f,, with odd n > 2. We should check the integrand

fro1(t—1) in (83) is already defined in the previous step, the integral has a finite

value and also the bound (E). In the integral of (A32), we have
t—1>max(s,f+¢,)— 1 =max(s,0+1)—12> 4.

Thus, f,_i(t — 1) is already defined in the previous step. Since f,,_;(t — 1) is
continuous in the integration range including the end points, the integral in (H2)
is finite. By (E2) for the previous step, f,,_i(s) is non-negative and so

B+n

S fols) < /B | et = D" < o0

for s € I,, N (0, B]. This shows the bound (E3). O

Under the assumption (33), we now successfully defined functions f,(s) by

Sﬁfl(s) — / dt"‘i7
(5,8+1]

" fuls) = / fa_1(t —1)dt" forn >2,
(max(s,B+¢,),8+n]

where f,,(s) is defined on I,,. We next derive some basic properties of f,,(s).

Proposition 9.2. Assume (33). We then have

(i) Forn >1 and s > 8+ n, we have f,(s) = 0.
(ii) For n > 1, the function f,(s) is continuous and non-negative on s € I,,.
(iii) For n > 1, the functions s" f,(s) and f,(s) are non-increasing on s € I,,.
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(iv) Forn > 2, we have
" fn(s) = / fno1(t —=1)dt" forseI,.
max(s,B+€,,)

(v) Forn > 2, the function f,(s) is of class C' on (8 + ¢€,,, +00).
(vi) For odd n > 3, the function f,(s) is constant for § —1 < s < 8+ 1.

Proof.

Immediate from the definition.

[y, Immediate from the definition by using induction.

Easily follows by [i] proven above.

Immediate from proven above and the continuity of f,,(s).

Immediate from the definition. O

By the above obtained heuristics, we may expect

VED,2)=V(z) £ Y V(D2)

n>1
n=v4 (mod 2)

zV(z)(l:l: > fn(s)>

n>1
n=v4 (mod 2)

provided the series

(9.5) T5(s)= Y. fuls)

n>1
n=v4 (mod 2)

are convergent. We shall prove this convergence later for s € I, with 8 in some
appropriate range. Assuming the series Ti(s) converges, we define
FE(s) =1+ T%(s)
so that our heuristic approximation will be
VE(D, z) = V(2)F~(s).

We give some observations on T (s) assuming the convergence of (B3) for s € I.
We start with the partial sum

(9.6) Tn(s) = Z fa(s) for N € N.
1<n<N
n=N (mod 2)

We have the following result parallel to T (s).

Proposition 9.3.

(i) For N > 1, the function T (s) is continuous and non-negative on Iy.
(ii) For N > 1, the function s"Tx(s) and Ty(s) are decreasing and

T (s)=0 fors> B+ N.
(iii) We have
(s"Tn(s)) = —ks" 'Ty_1(s—1) fors>p+ey.
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(iv) For odd N, we have
sS"Ty(s)=Ay —s" forB—1<s<f+1,
where
Ay = Ay (s, 8) = (B+ 1) Ty(B+1) + (B+1)".

(v) For even N, we have

Sodt
sNTN(s):—BN—ks”_AN_l/B(t_l)H for 6 < s <[+ 2,

where Ay _; is given as in and By = By(8, k) is determined by
B"Ty(B) = B" — By.

Proof.

[, Immediately follows by [PTop 2.

For odd N, it suffices to consider the range s > 3+ 1. We then have f;(s) = 0.
Therefore, by the definition of f,,(s), we have

(“Tu(e) = g2 P> 009

n=1 (mod 2)
d
—i( X she)
3<n<N
n=1(mod 2)
=—rs"0 Y faals—1)
3<n<N
n=1 (mod 2)
= —ks"! Z fuls = 1) = —ks" ' Ty_ (s — 1).
2<n<N—-1
n=0 (mod 2)

For even N, we consider the range s > 3. We similarly have

) =5 X )

2<n<N

n=0 (mod 2)

= —rs"! Z fn—l(s - 1)

2<n<N
n=0 (mod 2)

= ks Z fuls = 1) = —ks" " Ty_i (s — 1).
1<n<N-1
n=1 (mod 2)

This proves [ii1).
For —1<s<fB+1,by and the definition of f;(s), we have
s"Tn(s) = Z s" fn(8) + f1(s)

3<n<N
n=1 (mod 2)
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Yo BB+ (B -
3<n<N
n=1 (mod 2)

=B+ TyB+1)+(B+1)" —s"=Ay —s".

Therefore, holds.
By the continuity of T (s) at s = 3 from right and [iii)], we have

SHTN(S) = /BHTN(/B) 7/ TN—l(t — ].)dtl'i for /8 S S S 6 + 2.
B
By [iv], we then have

" " S dtﬁ S "
S TN(S)—ﬁ BN AN_l/ﬁ (t—l)l{—‘r/ﬁ dt

K

foodt
=-B A —
N+ s 1\/—1/ﬁ t—1)F

for <s<pB+2.
This proves [v].

We next consider the full series Ti(s). For convenience, we introduce

e,:=1 and e_:=0.

Proposition 9.4. Assume the series T~ (s) converge for s € I,.. Then,

(i) The convergence of the series T~ (s) are compactly uniform on I...

) The functions T (s) are positive and continuous on I,,.

) The series T=(s) can be differentiated term by term on (8 + 4., +00).
(iv) The functions T=(s) are continuously differentiable on (8 + ¢4, +00).
) The functions T*(s),s*T*(s) are non-increasing and

lim s"T%(s) = 0.
§—00
(vi) We have
(s"T%(s)) = —ks" 'TF(s—1) fors>pB+e,.
(vii) We have
S"TH(s)=A—s" forf—1<s<f+1,
where
A=Ak, B)=(B+1D)"TT(B+1)+(B+1)"
(viii) We have

SKT_(S):—B—f—s”—A/B (tci%),{ for f < s < B+2,

where A is given as in and B = B(, k) is determined by
BT~ (B) = B" - B.
(This strange notation is motivated by the equation 8" F~ (8) = B.)
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Proof.

Take sy € I.. By the non-negativity and monotonicity of f,,(s), the series
fu(sg) withn>1 with n = vy (mod 2)

is a majorizing sequence of
fn(s) with n > 1 with n = vy (mod 2)

for s > sy. Then, the result follows by the Weierstrass M-test.

Follows from of and [i)] proven above.

[y, It suffices to prove the series

S fals)

n>3
n=1 (mod 2)

can be differentiated term by term for s > 5+ 1 and

D fals)

n>2
n=0 (mod 2)
can be differentiated term by term for s > 3. Note that the functions f,(s) in

these series are of class C'' on the associated range I, by [Proposition 9.4. The
point-wise convergence of these series are assumed in (A3). Furthermore, by using
the definition of f,,(s), the term-wise differentiated series are

K'sﬁ_l Z fn—l(s - 1) = _Hsﬁ_l Z fn(s - 1)7

n>3 n>2
n=1 (mod 2) n=0 (mod 2)
D D R CE VR D D CE Y
n>2 n>1
n=0 (mod 2) n=1(mod 2)

which converge compact uniformly by [i] above. By these conditions, we can justify
the term-by-term differentiation and the continuity of the differentiated series.

Follows by [, [i] and [iii] of PTopostion U:2.
i), (v, Take the limit N — oo in [[if}, [iv] and [v] of Proposifion 9.3. [

10. DELAY DIFFERENTIAL EQUATION

We next study the functions

+
TH(s):= Y fals):
n>1
n=v4 (mod 2)

conditionally defined assuming the convergence. By [Proposition 9.4, these functions
are indeed a solution of the system of the delay-differential equations

(10.1) (s"T*(s)) = —ks" 'TF(s—1) fors>fB+e.
with initial conditions
S"TH(s)=A—s" forf—1<s<f+1,
BT~ (B)=p"-B
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with some real numbers A, B. In [Proposition 9.4, we have also seen
S dtl‘i
ST(s) =B -4 [ e e ps<hl
g (t—1)

In order to deal with the system of equations (), we introduce
{P(s) =F () + F () =T"(s) =T (s) +2

10.2
1oz Q(s) = F"(s) = F~(s) =T"(s) + T (s)

for s > 5.

Then, the above equation () implies
(s"P(s)) = 4+rs""'P(s —1)
(s"Q(s)) = —rs"'Q(s — 1)

The effect of considering the linear combinations P, () instead of T can be seen in
this equation (I3): it eliminates the alternating feature of the delay-differential
equation (). Also, we have

(10.3) for s > B+ 1.

s”P(s)zA—i—B—I—A/ Lﬁ
5 (t—1)
(10.4) for f<s<pB+1.

s gtr
s”Q(s):A—B—A/B G
By requiring these equations hold in the range (8,5 + 1), we extend P(s), Q(s) by
(10.5) s"P(s) =s"Q(s) = A forB—1<s<p.
Note that for the extended P(s),Q(s), the equation (IZ3) can be written as
(s"P(s)) = 4+rs""'P(s — 1)
{(SHQ(S))/ = —rs" Qs — 1)
or, equivalently,
(106) {sP:(s) = —kP(s)+kP(s—1)
sQ'(s) = —rQ(s) — kQ(s — 1)

In this section, we study the solutions of such delay-differential equations. Note
that the extended part (ITEH) of P(s), Q(s) are not related to T (s) by ().

for s € (6,5 +1) U (B + 1, +00).

for se (B,8+1)U(B+1,+00).

10.1. Delay differential equation. For a,b,C, D € R and 8 > 1, we consider the
delay differential equation of the form

(10.7) sR'(s) +aR(s) +bR(s —1) =0 forsc (B,8+1)U(B+1,4+00)
where the solution

R: (B—1,400) = R
is assumed to be

(R1) The solution R(s) is continuous on [, +00).
(R2) The solution R(s) is differentiable on (5,84 1) U (8 + 1, +00).
(R3) The solution R(s) is locally integrable on (5 — 1, 400).
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with an initial function
(10.8) s"R(s) =C —Ds" for f—1<s<p.
Consider the following sets of solutions R of (III2):
DDE(a, b, B)
={R: (8 —1,400) — R | R satisfies [RT], and (M)},
DDE(a, b, 8,C, D)
={R: (8 —1,400) — R | R satisfies [RT], [R2Z], (I=7) and (ITR)}.
10.2. Adjoint equation. The adjoint equation of ([C7) is given by
(10.9) (s7(s)) = ar(s) + br(s+1) for s € (0,400)

where the solution r(s) is assumed to be defined and of class C"' on (0, +00). For
R € DDE(a, b, 5) and r(s) satisfying (ITT), define their Iwaniec pairing by
(R,r)(s) = (R,r)y(8) == sr(s)R(s) — b r(t+ 1)R(t)dt for s > 3,
s—1

where the integral on the right-hand side exists by [R3}]. By the continuity of r(s)
on (0, +00), the continuity of R(s) on [8, +00) and the initial value condition (ITH),
we find that (R, r)(s) is continuous for s > £.

We use the solution of adjoint equation (any one of the solutions works) to study
the behavior of the given solution R(s) of the original delay differential equation.
The key property of the solution of the adjoint equation is the following.

Lemma 10.1. For R € DDE(a, b, 3) and a solution of r of (IT9),

(R, r)(s) == sr(s)R(s) — b/: r(t+ 1) R(E)dt

is a constant function for s > (3.

Proof. For s € (8,8+ 1)U (8 + 1,+00), by taking the derivative, we obtain

% = (s7(5))'R(s) + sr(s)R'(s) — br(s + 1) R(s) + br(s)R(s — 1).
By (IOI7) and (IX4), we have
d<R(’1772<5) = (ar(s) +br(s +1))R(s) + r(s)(—aR(s) — bR(s — 1))

—br(s+1)R(s) + br(s)R(s — 1)
= ar(s)R(s) — ar(s)R(s) = 0.

Thus, the pairing (R,7)(s) is a constant on (3,8 + 1) and (8 + 1,4+00). Then, the
continuity of (R, r)(s) at s = § + 1, we obtain the result. O

In order to use the key property
(R,r)(s) = sr(s)R(s) — b/ r(t + 1)R(t)dt = (constant),
s—1

we need a tool to calculate the constant on the right-hand side. For this purpose,
we can use the next lemma.
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Lemma 10.2. For R € DDE(a,b, 8,C, D) and a solution of r of (I4), we have
(R,7)(s)

—a . 1—a A+l
= Br{B)(R(B) ~ CF ™)+ C lim r(o = (o — )™+ bD/ﬁ r(t)dt

for s > 3.

Proof. By Cemma T, we have
R, = lim (R, r)(0).
(R,r)(s) 01\(B< r)(o)

We obviously have

lim or(o)R(c) = Br(B)R(P)

oN\B

since R(s) is continuous at o = # from right. We also have

—b ’ r(t+1)R :—b/ r(t+ DR(t)dt + o(1) as o\ B.

o—1

By (IIIR) and (), we have
B
— b/ r(t+ 1)R(t)dt
o—1
B B
:c/ (br(ttiﬂ))dww r(t +1)dt
o—1

o—1
:cﬁw

B+1
dt + bD/ r(t)dt +o(1) as o\, p.
B

By integration by parts, we have

c/ﬁw calt c/g

— —C(r()8' ol 1)(0—1) D
ar®) o T ar)
t* t*

=-C(r(B)p " =10 =1)(o - 1)),

By combining the above results, we have

+C

(ar(a)R(U) i /0 : r(t + 1)R(t)dt>
= lim <m~(a)R(o) b /U 5_1 r(t + 1)R(t)dt>
(

B+1
or(0)R(o) — C(r(B)B* —r(o — 1) (o —1)' ") + bD/ r(t)dt)
B
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B+1
=pr(B)(R(B)—CB~ ")+ C 11\% r(o—1)(c—1)"""+ bD/ r(t)dt.
a B
This completes the proof. O

10.3. A solution of adjoint equation. Any solution of the adjoint equation
(s7(s)) = ar(s) +br(s+1) for s >0,

can be used to study the behavior of a given solution of the original equation. Thus,
it suffices to construct one particular solution for the adjoint equation for any a, b.
We try to consider the Laplace transform

r(s) = / ¢(x)e *dx  for s >0,
0
where for the convergence of the integral, we assume
(10.10) plz) <z’ (=0 and ¢(z) <2 (2 — +o0)
with some constant § < 1 and C' > 1. By taking the derivative, we then have

r(s) = — /000 xd(z)e *dx
By assuming the smoothness of ¢(z) and using the integration by parts, we have
sr'(s) = /000 zp(x) (e dr = — /Ooo(x¢(x))/e_sxda;
since z¢(z) < ' 7% = 0 as 2 \, 0. This gives

(s1(s)) = s1'(s) +7(s) = /OO(—xgb'(w))e*”dx.
Thus, the requirement from the adjoint equa?cion is given by
—a¢(z) = (a+be ")g().
By rewriting slightly, we have
/ —x
q;((;:)) :_a;i-b+b' 1 xe .
Thus, as a candidate of ¢(z), we may take
o(x) = Coy(—a)a™ "+
with some constant Cy > 0, where
By (2) = "2 for zeC

and Ein(z) is the so called entire exponential integral defined by

z 1 _ —t
Ein(z) = / te dt for z € C,
0
which is obviously entire. For = > 1, we have
1y _ ot
(10.11) 0 < Ein(z) = /
0

and so the growth condition (M) holds around +oo but the growth condition
around 0 holds only if a+b < 1. We thus need to modify the contour of integration.

T dt
1



28 Y. SUZUKI

Before shifting of the integration, we determine the constant C, so that the
behavior of r(s) as s — oo becomes simpler. We thus assume a +b < 1. We
consider the asymptotic behavior of

/ e TPy (—az)z” T dy
0

as s — oo. By changing the variable via © = u/s, we get

/ efsmq)b(f:c)af(a%)dx:S‘Hb*l/ e"fbb(u>u(a+b)du.
0 0 s

By Lebesgue’s dominated convergence theorem, we then have

oo
/ e 0y (—x)a Ty
(10.12) 0 -
~ TP / e "u Ty =T(1 = (a+b)s*™"! (s > o0).

0
Thus, we use the normalization
1 > —sz —(a+b)
r(s) = ——— e o (—x)x dx.
(#) F(l—(a—i—b))/o =)

We then shift the contour of integration. For r > 0, let us define the contours

e The straight line .Z_(r) given by ze™ ™ from = = oo to & = r.

e The unit circle €(r) given by re'’ from § = —7 to § = +.

e The straight line .Z, (r) given by ze*™ from z = r to = = co.
We then define the Hankel contour J# by

H(r)=2L (r)+€(r)+ 2L (r) and € :=7(1).

We first assume a + b < 1 to shift the contour.

Lemma 10.3. For a,b,s € R with s > 0 and a + b < 1, we have

1 _ i b < _
— [ ey () Tz = w/ e 0, (—z)a TV da.
2w J 4 ™ 0

Proof. For 0 < r <1, since a+ b < 1, we have

‘/ e, (2)2 Tz
()

Thus, by Cauchy’s theorem, we have

<sp P @) 0 asr 0.

1 _
3 %ﬂesz@b(z)z (@t g,
1 _
= ey (2)2 (@+t) g,
2mi J 2, ()
1 ;
52@ —(a+b)d
3 ‘z’,(o)e b(2)z z

e+(17(a+b))7ri

= T/o ey (—z)a” T dy

e—(l—(a-i—b))Tri o
- / e Py (—x)z T dz
0

21
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_ Sll’l(l — (a‘ + b))’/T / 678$(I)b(—(£)$7(a+b)dx
0

= sin(a + b)m /00 e @y (—x)z T da.
0

™
This completes the proof. O
According to Cemma 103 and
sin(a +b)m 1
m C T(a+b)I(1—(a+b)’
we define the standard solution r, ,(s) by
r _
Tap(8) = M/ ey ()2 Tz
’ 2me w

for arbitrary a,b € R. Note that when a+b € Z, the pole of I'(a+ b) is cancelled

with the zero of the integral. Since the contour % avoids the origin z = 0, the above

integral converges absolutely and compact uniformly with respect to s € (0, +00).

Therefore, 1, 4(s),7.5(s) are analytic in any of variables a,b, s € C with Res > 0.
The expression

1 o0

- e, (—z)z TV dy
I‘(l—(a—&—b))/o (=)

is analytic in @ and b in the range a + b < 1 and coincides with the expression

I'(a+0)

—omi /ﬁ e, (2)2 Tz

assuming a + b € Z<, by the above argument.
We check the above defined 7, ;(s) is a solution of the adjoint equation.

Proposition 10.4. For a,b € R, the standard solution 7, ;(s) satisfies
(s7a,6(5)) = arap(s) +brou(s+1) fors>0.

Proof. By the identity theorem of analytic function, we may assume z = a + b is
not a pole of I'(z). Then, recalling the definition of ®,(z), i.e.

<I>b(z) — 6b Ein(—z)

and using the integration by parts, we have

r b -
57"@7()(5) _ (;7:; )/ﬁ(eszyebEm(z)z(a+b)dz

_ F(a + b) / 5% (eb EiIl(—z)Z—(a+b))/dZ
2mi w

_ bF(a + b) / eszebEin(—z) Ein/(_z)z—(a+b)dz
21 4

r b )

Since
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we further have

STGJ)(S) — bw/ 6(S+1)zebEin(fz)zf(a+b+1)dz
I

21

+ aF(a’ + b) / eszebEin(—z)z—(a-&-b-&-l)dz.
2m w

By taking the derivative with respect to s, we obtain

T .
(S’I‘mb(s))/:b (;+ )/ e(s+1)zebEln(—z)z—(a-i-b)dz
e R4
r b in(—z) —
+a (a+ )/ eszebEln( z)Z (a+b)dz
21 R4

=ar(s) +br(s+1).
This completes the proof.

O

10.4. Asymptotic behavior of 7, ;,(s) as s — co. We next study the asymptotic

behavior of 7, ;(s) as s — 00, a prototype of which is already given in (ICT).

Lemma 10.5. Fora,b € R and N € Z>, witha+b—1 < N, we have
n b—1 a+b—1—n
Tas(s) = Z (I)l(z )(O) <a+ )s +b—1

n
0<n<N
1 o0
—sTp B —(a+b)d

P, ¢ el s

for s > 0, where the binomical coefficient is defined by
(a+b—1) _(a+b-1)---(a+b—n)
n o

n!

and Ry ;(x) is the remainder of the Taylor expansion

(n)
(10.13) Oy(z)= > ‘I’bT!(O)zuRM,,(z)

at z =0.

Proof. By the identity theorem of analytic function, we may assume z = a + b is

not a pole of I'(z). By substituting (IL3) into the definition of r, ,(s),

®;" (0) D(a + o n—(a
m,b(S) = bn, <2m. )/ ez ( 'H’)dz
0<n<N : a
r b X _
+7(a—|—. )/ e Ry (2)z @b g,
2me 0% ’

For the former terms, by changing the variable and using Cauchy’s theorem,

F(a+ ) / eszzn—(a—i-b)dz _ F(a+ )Sa+b—1—7z/ €Z,Zn_(a+b)dz.
Fa b

271 2m
By using Hankel’s formula for Gamma function, we further have

F(a + b) / eszz7z—(a+b)dz _ F((l + b) Sa+b—1—n
21 S I'((a+b) —n) '
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Since the recurrence formula I'(s + 1) = sI'(s) gives
I'(a +b)
B S h—1)--- h—

we obtain

(n)
Z (I)bn (0) F(a’ + b) / eszzn—(a-i-b)dz
A

n! 271
0<n<N
n b—1 1
S e (T e
0<n<N n

For the last remainder term, since
| R o(2)] <y 12| for [2] < 1
and N +1— (a+b) > 0, we have

‘/ e Ry 2@t g,
E(r)

Therefore, we can shrink the Hankel contour to obtain

I
7(@—!—.1))/ eSZRN’b(z)zl_(a’Lb)dz
I

N+1=(atb) g a5 = 0.

<<s,b r

211

= M/ eSZRN’b(Z)Zi(a+b)dZ
211 $+(O)
r b . _
+ L—i_.) / e” Ry p(2)z (@+b) gz
271 £ (0)
_ I + b) (1= (atb)mi /OO e Ry y(—2)a @V dy
27 0 '
T(a + b) o~ (1= (atb)mi /OO e Ry (=) D
2mi 0 ’
I'(a+0)

= ——(sin(1 — (a + b))ﬂ')/ e_sxRNyb(—m)x_(a's'b)dx
m 0

1 > —sx —(a+b)
e . - d .
T = (@atD) /0 e " Ryy(—x) T

By combining the above results, we obtain the assertion.

Proposition 10.6. For a,b € R and N € Zx,, we have

n b—1 a+b—1—n a+b—1—
(10.14)  rop(s) = > @ (“+ >s toolon L o(sa i)
0<n<N "

for s > 1, where the implicit constant depends on N,a,b. In particular, we
have

(10.15) Tap(s) = sATPTE L o5,
for s > 1, where the implicit constant depends on a,b, and so
(10.16) Tap(s) ~ s as s — oo,

where the rate of convergence depends on a, b.
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Proof. We first prove (0Id). Let M = M(a,b, N) be the smallest non-negative
integer witha+b—1< M and N < M. By CemmaT0F, we have

-1
ra(s) = Z @l()n)(o) <a +b )8a+b—1—n

n
0<n<M

1

> —sz _ —(a+bd)
+ A= (as0) (a—l—b))/o e T Ryrp(—x)x dz.

Since

n b—1 a+b—1—n a+b—1—
Z (I)l(> )(0) (a+ )3 ot <La,b,N S TN,
N<n<M "

under the notation of Cemma T(IH, it suffices to show

1 > —sx —(a+b) at+b—1—-M
- R — d
0= (a5 D)) /0 e mp(—2)T r <L s

for s > 1. We decompose the integral as

0o 1 00
/ eiszMb(—x)x*(a%)dx = / —|—/ =1, +1,, say.
0 0 1

In the integral I;, we have |—z| < 1. Thus, by the definition of Ry, ,(—), we have

M
|Rarp(—2)| <parp 2.

Therefore, we have

I <</ e 5T M—(at) gy
0

oo
< SaerflfM/ 67I$M7(a+b)d£€ < SaerflfM'
0

For the integral I,, note that

bEin(z) ‘D(n)(o) (b,M—1) b+M—1
Rypy(—w) =P — 57 —pmma” gD <
0<n<M

for x > 1 by (). Therefore, we have

oo
I, <</ e Mgy
1

S o0 s
< 6_5/ e 2T Mgy
1
s [P 1. M 5 b—1—-M
< e‘f/ e My < o7 < 50T
S
since s > 1. By combining the above results, we obtain the result. (I

10.5. Special cases of 7, ;(s).

Lemma 10.7. For b € R, we have
o (0) = 1,

n—1

"™ (0) = — <’;) a(0) forn>1.
0

Sl

{=
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Proof. The first formula is obvious. By taking the derivative, we have

s s 2 _1
q);)(z) _ (ebEln( z))/ _ _bEin/(_Z)ebEln( z) _ _b(e - )@b(z)

and so

Z (n— - _bz k! Z

n=1 k=1 /=0

_ bZ( Z ( ><1>“)(0))
n=1

By comparing the coefficients, we obtain the assertion. [

Proposition 10.8.
(i) Fora+b=1, we have r,;(s) = 1.
(ii) We have

(5)=1, 71(s)=85—1, 194(s)= 5% — 65> + 95 — 8.

Proof.
()] When a + b =1, we can take N = 1 in Cemma 101 to get
(63) g

= b me_sz —z) — D)~y
ra,b(s) =1 + F(]. - (a+ b)) /0 (q)b( ) 1) * d

since ®,(0) = 1. Also, since 1 — (a+b) = 0, the second term on the right-hand side
is zero and so 7, ,(s) = 1. This proves [i}.

The first formula r1 1 (s) = 1 follows by [i] proven above. We use Lemma T3
and CemmaTO . By taking N = 2,4 in Cemma 103, we have

ra(s) = 8 (0) (é) s+ao)(;)

)

(0)
rya(s) = & (0 ( > s* + ) (0) G’)s? +0%(0) (Z)H@g")(m (2)
(

=5+ 3<I)(1) 0)s” + 3‘I>(2 (0)s + @ég)(O).
By LemmaTd, we have

B0 = -} ) a0 = 1.

2)(0) = -2( ol (0) = -2

20 = - ((5)o 0+ (})o) = - -9 =3
20 = -2( (7)o 0+ (7)ol 0+ (3) o)

2 8
= Z1-6+9) =—-.
g(1=6+9) =3
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Combining the above results, we obtain the claimed formulas. O

10.6. Asymptotic behavior of r, ,(s) as s \, 0. We next study the asymptotic
behavior of 7, ;(s) as s \, 0 for some values of a, b.

Lemma 10.9. We have
1 1 — e—t oo e—t
/ dt — / —dt = 7.
0 t 1t
Proof. By integration by parts, we have

1 —t oo —t
]_ —
/ c dtf/ € at
0 t 1t

1 1 ) o)
= {(1 — e_t)logt} —/ e "log tdt — [e_t logt} —/ e "logtdt
0 0 1 1

= —/ e logtdt = —I"(1) = ———= = 1.
0

This proves the lemma. O

Proposition 10.10. For a,b € R witha+b <1 and a < 1, we have
Tl —a) .

Ta.p(8) ~ ms as s \, 0.

Proof. Since a + b < 1, we have

1 > et
= —sz+b dt )z~ da.
Tap(5) 0= (a5 D)) /0 exp( ST + /0 ; )x T

With the convention that

xl_ —t 11_ —t
/ c dt:—/ C dt ifx<i,
1 t x t

3:1_ —t 11_ —t xl_ —t
b/ € dt:b/ € dt+b/ € at

11_6715 Ieft
:b/ dt—b/ —dt +blogx
0 13 11
and so

1 00 1 1— e—t T e—t .
Ta,b(s) = m/o exXp (—S.’E + b/o ; dt — b[ tdt)x dl‘

By changing variable via sx = u, we have

we have

x

a—1 0o 1 —t z -t
s 1—e s e
Top(s) = = ex forb/ dtfb/ dt)madfl?-
#8) r<1—<a+b>>/o p( ot Lt
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By Lebesgue’s dominated convergence theorem (we need to construct the dominat-
ing function by considering two cases < s and s > z), as s \, 0, we have

Tab(8) 1 (/11—e_t /me_t )/OO % —a
. — expl| b dt —b —dt e “x “dx
S A (atb) P\ Sy Tt ot )

¢

_ F(lr(_l(;i)b))exp(b/ol ! _te_tdt—b/loo etdt)

e"'I(1 - a)
I'(l—(a+0))
By CemmaT04. This completes the proof. O

10.7. Zeros of r,;(s). Our choice of the parameter 3 = ((x) will be related to a
zero of r, ,(s). We thus study the location of zeros of 7, ;(s).

Proposition 10.11. For a,b € R and s > 0, we have
rap(s) = (@+b—1)ra_14(s)-

Proof. By the identity theorem of analytic function, we may assume z = a + b is
not a pole of I'(z). By taking the derivative of

r b
Ta,b(s): (;+ )/ esz(bb(z)zf(aer)dz7
T A

we obtain . )
rp(s) = M/ e ®,(2)z (D g,
’ 21 A
Ifa+b—1¢Zy, we have

Tab(s) = F(l;(i;rf)l) Ha ;ﬂli) ) /f 7, ()2~ (@D g,
= F(E(i—;)—b)l)ra—l,b(s) =(a+b—1)r, 1 4(s).

If a+b—1 € Z<, then since a + b € Z,, we have a+b=1andsoa+b—1< 1.
Therefore, by CemmaT03, we have

T;’b(S) = F(a + b) <Sin((a 771-1) + b)71'> /Ooo eszq)b(z)zf((afl)+b)dz

=0= (CL + b— I)Ta,Lb(S)
since now sin((a — 1) + b)m = (a + b — 1) = 0. This completes the proof. O

Proposition 10.12. For a,b € R with a +b < 1, we have r, ,(s) > 0 for s > 0.

Proof. Since a + b < 1, the standard solution r, ,(s) is given by
1 o0
rap(8) = =——— e, (—z)z” T .
a,b( ) F(l — (a—i—b)) \/0 b( )

Since the integrand of
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is positive and the gamma factor is non-zero, the assertion follows. ([

Proposition 10.13. For a,b € R, we have
#{s € (0,400) | ry(s) = 0} < max(a+b,1).

Proof. We prove the assertion in the range
at+b<n
by induction on the range of n.

Initial case n = 1. For n = 1, we have a +b < 1 and so max(a + b,1) = 1. When
a+b < 1, by Proposition 10.12, 7, ;(s) is positive and so non-zero. When a+b = 1,
by [i) of Proposition 10.8, we have r, ,(s) = 1 and so 7, ,(s) has no zero.

Induction step. Assume n > 1 and the assertion is proved for a + b < n. We shall
prove the assertion for n < a +b < n + 1. Suppose that 7, ;(s) has at least M > 1
zeros in (0,400). By Rolle’s theorem, we can find (M — 1) zeros of 7, ,(s) between
these M zeros. However, by [Proposition I0.11 and @ + b — 1 > 0, zeros of révb(s)
coincide with zeros of r,_; ;(s). Since (a —1) +b < n, by the induction hypothesis,
we have M — 1 < max((a — 1) +b,1). Therefore, by taking M to be the number of
all zeros of r, ,(s) (or, if there is no zero, then the assertion trivially holds), we get

#{s € (0,400) | 744(5)} < max((a — 1) +b,1) + 1 = max(a + b, 2).

If max(a + b,2) = a + b, then since a + b < max(a + b, 1), the assertion holds. If
max(a + b,2) = 2, since the left-hand side is an integer, we have

#{s € (0,400) [ 1,4(5)} <1 < a+b=max(a+b,1).
This completes the proof. ([

Proposition 10.14. For a,b € R, the following are equivalent:

(i) We havea+b>1andb > 0.
(i) The standard solution r, (s) has a zero in (0, +00).

Proof.
— [(ii). Assume b > 0. We prove the existence of zero in the range
n<a+b<n-+1

by induction on n € N.

Initial case n = 1. For the initial case n = 1, we have 1 < a + b < 2 and so we can
take N = 1 in Cemma A, Since ®,(0) = " ¥™® = 1, this gives

1
a+b—1 —sz —(a+b)
- R S— O, (—x) — 1
rop(s) =s i b))/o e (Py(—x) — Dz dx

o by () )

As s\ 0, since b > 0, we have

/OO e ® <<I)b <x> — 1> 2@ gy = /OO e’ (ebEin(%) — 1)x7(a+b)dz
0 s 0
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> bEin(2 b
> / e * (e in($) _ 1)x_(a+ ) da
1

oo
> (ebEm(%) - 1) / e T2 gr 5 .
1

Thus, by using

sin(a 4+ b)w

=T(a+b) <0

1
I'(1—(a+0))
for 1 < a+b < 2, we obtain r, ;(s) < 0 for sufficiently small s. Since r, ;(s) > 0 for

all large s by [Proposition 10.6, the intermediate value theorem implies that r, ;(s)
has a zero.

Induction step. We consider the induction step from the (n — 1)-th case to the n-th
case with n > 2. Assume n < a + b < n + 1. By the adjoint equation

(Sra,b(s))/ = ara,b(s) + b’r'a,b(S + 1)7
we have
sr;,b(s) = (a—1)ryp(s) +brgp(s +1).
By Proposition 10.11, we have
(a+b—1)sr,_14(s) = (a—1)ry () + bry (s +1).

By the induction hypothesis and n — 1 < (a — 1) + b < n, we can find the largest
zero oy of 7,1 ,(s). By chosing s = ay, we get

0=(a—1)rgp(aq) +bryp(a; +1).

By the maximality of a; and [Proposifion 10.11l, we find that r,,(s) is strictly
increasing for s > «y. Since b > 0, we have

0=(a—1)rgp(ag) +bryp(a; +1) > (a+b—1)rg ().

This shows 7, ;(a;) < 0. Since 7, ;(s) > 0 for all large s by [Proposition 10.0, the
intermediate value theorem implies that r, ;(s) has a zero.

= [[{)}. We prove the contraposition, i.e. we prove that r, ,(s) has no zeros if
a+b<1lorb<0. For the case a + b < 1, [Proposition 10.13 shows that 7, ;(s) has
no zero. We thus consider the case a +b > 1 and b < 0. If b = 0, then

@b(z) _ 6bEin(z) -1

and so

r b _ r b _ _
Y b(S) — (0‘74_) esz‘I)b(z)Z (a+b)dz — ﬁ eszz (a+b)dz _ Sa+b 1
’ 211 R A 21 R4

by Hankel’s formula, which shows 7, ;(s) has no zero. Thus, we may assume b < 0.
By the adjoint equation

(Sra,b(s))/ = armb(s) + bra,b(s + 1)7
we have
sr;,b(s) =(a—1)ryp(s) +brgp(s +1).

Assume to the contrary that 7, ;(s) has a zero in (0, +-00). By [Proposition 10.13, we
can take the largest one, say s = a. By substituting s = « in the above equation,

ar;7b(a) = (a—1D)ryp(a) +bryp(a+1) = br, ,(a+1).
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By (I8) of [Proposition 10.9, we should have r;’b(oz) > 0 since otherwise r, ,(s) <
0 for s > « sufficiently close to o and r, ,(s) > 0 for large s > o and so the inter-
mediate value theorem shows there exists a zero larger than «, which contradicts
the maximality of «. Similarly, the intermediate value theorem and the maximality
of o shows 7, ;,(a + 1) > 0. Recalling b < 0, we then have

0 < arl (@) =bryy(a+1) <0
which is a contradiction. This completes the proof. ([l

10.8. Propagation of the inequality.

Lemma 10.15. For real numbers a,b, 8 with 8 > 1 and functions
R € DDE(a, b, B),

assume that the follwing are satisfied:

(1) We have b > 0.

(2) For the standard solution r(s) =7, ,(s), we have
(R,r)(s) =0.

(3) We have r(s) > 0 for s > .

When the initial conditions

{ R(s) is not constantly zeroon 8 —1< s < f

(10.17) R(s)>0 forB—1<s<p

hold, then we have:

(i) We have R(s) > 0 for s > .
(ii) The function s R(s) is non-increasing for s > 3.

Proof.
[i). By the assumption [2}, we have

S
(10.18) sr(s)R(s) = b/ r(t+ 1)R(t)dt for s > B.
s—1
By taking the limit s\, 3, using (IIT4) and recalling and [3], we get
B

Br(B)R(B) = b/ﬁl r(t+ 1)R(t)dt > 0

and so R(8) > 0. Assume to the contrary to [1), suppose that R(s) < 0 for some
s > . By the continuity, we can then take the least s; > 3 such that R(s;) < 0.
Since R(B) > 0 as we have seen, s; > . Then, by the minimality of s;, we have
R(s) > 0for 8—1< s < s; and R(s) > 0 for s slightly smaller than s;. Then, by
and (MIIR), we have

S1

s11r(s1)R(s1) = b/ r(t+ 1)R(t)dt > 0.

s1—1
This contradicts the choice of s; and so [} holds.
[i). This follows by [i] proven above since
(s°R(s)) = as" "R(s) 4+ s - sR'(s) = —=bs" 'R(s —1) >0 for s >,
which follows by R € DDE(a,b, 3). a
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Lemma 10.16. For real numbers a, b, sq with b, s, > 0 such that
(10.19) Ta.4p(8) >0 for s> s,

we have ,
r S
(aH)()> >0 fors > s.
Ta,fb(s)
Consequently, we have
Taﬁrb(s)
ra,—b(s)

is strictly increasing for s > sg.

Proof. The adjoint equations
(570,40(5))" = arq 4p(s) £ bry (s + 1)
can be rewritten as
(Sl_aTa,:tb(S))/ = S_G(Sra,ib(s))/ —as” "4 1p(s) = £bs" 1y 1y (s + 1)
Therefore, by the assumption (1Y) and b > 0, we have

() = (o :fiiii)
(5 T (8) s

a—b(8) = 87, 1y (8) - (51 r 4 (s))
( ()
Ta,46(8s + 1)ra () + 70 45(8)rq, (s + 1)
Sra,—b(s)Q

and the assertion follows. O

>0 fors> s

Lemma 10.17. For real numbers a,b, 8 with b > 0,3 > 1 and functions
R* € DDE(a, +b, 3),
assume that the follwing are satisfied:
(1) For the standard solutions ri(s) =1, 1p(s) of the adjoint equations
(srE(s)) = ar®(s) £ brE(s + 1),
the Iwaniec pairing is given by
(10.20) (RE,r)(s) =0 fors>p
(2) We have r=(s) > 0 for s > f.
When the initial conditions
{ R"(s) is not constantly zero on f —1 < s < f3

|IR™(s)| < RY(s) forp—1<s<p
hold, then there exists a real number n = n(Ri) € (0,1) such that
|R™(s)| < nR*(s) fors> 6.

(10.21)

Proof. We first prove the following claim:



40 Y. SUZUKI

Claim 10.18. For s > (8 and n € (0, 1] satisfying
[R™ ()] < nR™ (1)
R (t)

is not constantly zero

fors—1<t<s.

We then have
|R™(s)] < nR™(s).

Proof. By (IIZ0), we have
(10.22) sr¥(s)RE(s) = +b / rE(t+1)RE(t)dt  for s > f.
s—1
By the continuity, this equation holds even if s = . By choosing the sign —, taking
the absolute value and using the assumption, we have

st (s)|R™(s)] < b/i r-(t+1)|R™(t)|dt

1
< nb/ r~(t+ 1)R* (t)dt.
s—1

Since RT(t) is not constantly zero on (s — 1, s), by Cemma 018 and [2], we have

s R ) < 51 mrm R ()t

< :;8 ~nb/:1r+(t+ 1)R* (¢)dt.

By using (22) with the sign +, we get

sr(8)|R™(9)| < :;Ez;nsr+(s)R+(s) = nsr_(s)R+(s)

and so |R™(s)| < nR"(s). This proves the claim. O

We first prove |[R™(s)] < R*(s) for s > . Assume the contrary. Then, by
the continuity of Ri(s) for s > [, we can take the smallest s; > (3 such that
|R™(s1)| > R (s1). By the minimality of s, and (IIC21), we have |R™(t)| < R*(¢)
for s; — 1 <t < sy. If s; = 3, by the assumption, R+(t) is not constantly zero
for s, — 1 <t < s;. If s; > f3, by the minimality of s;, we have |R™(t)| < R (t)
with ¢ > § slightly smaller than s, and so again R (t) is not constantly zero for
s1—1 < t < s;. We can thus apply Claim to get |[R™ (s;)| < R"(s1), a contradiction.
Thus, |R™(s)| < R (s) for s > § and so R (s) # 0 for s > S.

Since |R™(s)] < R'(s) for s > f8 and since R¥(s) are continuous for s > 4,
we can take 1 € (0,1) such that [R™(s)| < nR"(s) for 8 < s < 4 1. We then
prove |R™(s)| < nR"(s) for s > 4. Assume the contrary. Then, by the continuity of
R*(s) for s > B, we can take the smallest s; > 841 such that |R™ (s;)| > nR" (s1).
By the minimality of s, and by the choice of 7, we have |[R™(t)] < nR'(t) for
s1—1 <t < s;. Since R+(s) # 0 for s > (8 as proved in the previous paragraph, we
can apply the claim to get |[R™(s1)| < nR*(s1), a contradiction. This completes
the proof. O
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10.9. Some integral inequalities. To study the asymptotic behavior of the solu-
tion R(s) of the original delay-differential equation, we need some integral inequal-
ities. In this subsection, we develop such integral inequalities.

We start with introducing a function £(u) following, e.g. Hildebrand and Tenen-
baum [B, Section 2]

Proposition 10.19. The function

is increasing for all £ € R and
lim 7(¢) =0, n7(0)=1, lim n({) = +oc.
{——o0

{—+oo

Proof. This is obvious from the expression

1
n(f):/o etedt.

This completes the proof. [

By [Proposition 10.19, we can define an increasing function
£:(0,400) = R

as the inverse function of
n: R — (0, +00),

i.e. we define £(s) be the unique real number £ = £(s) such that
e —1 _
§

We then prepare some basic facts on the function £(s).

S.

Proposition 10.20.

(i) We have
loglog s loglog s 2
&(s) =log s + loglog s + +0
log s log s
for s > e°.
(ii) We have
s—1 1
s -
§(s) ~ 2
and 1
§(s) = —
O

for s > 1. Consequently, we have

co-Lom(o(s)

for s > e.
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(iii) We have

s s)?
f”(s) _ &(s) £(s)

for s > 1. Consequently, we have

o=l

for s > e.
Proof.
We may assume s is sufficiently large. By the defining equation
ef(s) -1
)7
we have
(10.23) £(s) —log&(s) + O(e ™)) = log s.

Since £(s) — oo as s — oo, this gives
&(s) < logs.
On re-inserting this formula into (IITZ3), we get
&(s) =log s +loglogs + O(1).
On re-inserting this formula into (IZ3), we further get
&(s) =log s +log&(s) + O( ! )

slog s

loglog s
log s

1
logs+loglogs+log<1+ O< )
log s

loglog s 1
=1 log1 0] .
og s + loglog s + log s + (logs)

A further iteration gives

&(s) =log s + log&(s) +O< 1 )

slog s

log 1 log 1
:logs—l—loglogs—i—log(l—i— o8 ogs) +O( o8 og§>
10g5 (logs)

log 1 log1 ?
= log s + loglog s + o8 ogs+0 08085 .
log s log s

This completes the proof.

By the formula for the derivative of inverse function, we have

! = ! I S
(10.24) ¢(s) = T for s > 0.

Note that

1
(10.25) ' (€) :/ te dt >% for £ > 0.
0
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For £ > 0, by integration by parts, we have

13 1 ¢
U/(f)zi—%/o it =< @

3 £ ¢
‘_ -1 -1
_ 51_?7(5)5 =n(€)—n(£)§ .
For s > 1, by substituting £ = £(s) > £(1) = 0, we get
ey — g 51

By (II24) and (M25), we get the first half of the assertion. The latter asymptotic
formula is then a corollary of the former one since n'(£(s)) > & for s > 1.

The first equation is a corollary of [ii]. The latter asymptotic formula also
follows from for large s. For small s > e, say e < s < s, it suffices to see
¢"(s) < 1. By the first half of [ii), we have

1

&'(s) > (1 -5

JGEIE

1
n(l):/ eldt=e—1<e andso 1< &(e).
0
We also have ¢”(s) < 1 by the continuity of £”(s). This completes the proof. [

For the decay of the special solutions, we use the following lemma.

Lemma 10.21. Let x > 0 and E > 1. Then, for any continuous function f(s)
on [sg, +00) with sy > 0 satisfying the inequality

(10.26) (s=E)|f(s)| < n/ |f(t)|dt for large s > s¢ + 1
s—1
obeys the bound

e <o [ (L) de+crogts +0))

for s > s, with some constant ¢ = c¢(f) > 1.

Proof. We first prove a preliminary inequality. Take ¢ > 1 chosen later. In this
proof, implicit constants may depend on x, E but should be independent of c. Let

¢(s) = /:E(Z)dt —clog s

for s > k. By taking the derivatives, we have

(10.27) ¢(s) = 5(5) ~C amd ()= is(i) g

K S
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and so by [Proposition 10.2(, we have

ool
(10.28) _ (Z) (1 n o(i)) for s > s,(c, k)

1 1
¢ (s) < 3

By the mean value theorem, we then have

oy OO o(%)

= €<3>60(§) for s — 1 <t < s with s > s1(c, k).
K

By (@), we have
H6¢(s) s

s—F s—1

#(s) s
< (/ e_d)(t)dt) max \f(t)|e¢(t)
s—E\Js_1

s—1<t<s

)’ < 01D ey

(10.30)

for large s > sy + 1. For the last integral, by (III29), we have

s b(s) s
5) / O — & ( / 6¢(t>¢/(t)dt)60<§)
s—1 5(%) s—1

o(s)-o(s-1) _ 1
- 6_@0(%) for s > s1(c, k).

£(%)
By Taylor approximation, (I2Z7) and (I2R), for some o € (s — 1, s), we have

Bls) — 05 1) = /() + 36"(0)

= §<s> _ < +O(1> for s > s1(c, k).
K s s

) > ()

Therefore, since

S>> slogs for s > s;(c, k),

by using the definition of £(2), we have
50) / ot _ 7T o
51 £(3)
_ P 1 oy
O
Zef%o(i) for s > s1(c, k)

1 c 1
$)e?® < = 5TOG) pax f(t e?®)
E
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< e 5T ,max |f(t)|e¢(t) for s > s1(c, K, E, s¢).
with some C' = C(E, k) > 0. By taking
c=C+1,
we arrive at
(10.31) F)I? < e max |f(1)]e”? for s > s1(x, B, o).

We refer the s;(k, F, sg) in (I0IZ3) as s; below.
We now prove the assertion. Since log(s+e) < logs for s > e, it suffices to show

(10.32) [f(s)] < Lexp(— /S§<i)dt+clogs) for s > sy,

where

_ #(s)
L= ., max |f(s)]e”.

Indeed, for the original assertion with s > sy, we can replace ¢ by some larger value.
Assume that (I32) does not hold. Then, there should be some s > s; with

|£(5)[e”™ > L.
By the continuity of \f(s)\e¢(s), we can take smallest § > s; with
F@)e”? > L.
By the minimality of s and the definition of L, we have
1F(s)]e®® <L fors; —1<s<3

By (I3T), We then have

L<|f@3)e’® <e™® max |f(t)]e’™ <e 7L,
F-1<t<%
which is a contradiction. Therefore, the assertion must be true. ([l

Later, we need the following lower-bound version of Cemma TO 21,

Lemma 10.22. Let k > 0 and E > 1. Then, for any positive continuous
function f(s) on [sg,+00) with so > 0 satisfying the inequality

(10.33) (s+E)f(s)> H/ f(t)dt for large s > sq+1
s—1
obeys the bound

F(s) > exp (- /K ¢ (Z) dt — clog(s + e))

for s > sy with some constant ¢ = ¢(f) > 1.

Proof. We first prove a preliminary inequality. Take ¢ > 1 chosen later. In this
proof, implicit constants may depend on x, E but should be independent of c. Let

o(s) ::/ f(i)dtJrclogs
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for s > k. By taking the derivatives, we have
s c 1 s c
10.34 "s)=¢(2)+= and ¢'(s)==¢(2) - =
(10.34) e =¢(2)+S ma o= (L) -5
and so by [Proposition 10.20, we have
O( : ))
slog s

(10.35) _ (Z) (1 n O(i)) for s > s,(c, )
1

By the mean value theorem, we then have

o0 =) +0(3)

(10.36)

= §(8>eo(i) for s — 1 <t < s with s > s1(c, k).
K

By (I33), we have

e ?(®)

o(s) & et . =) gy
fe)e? > 2 [ et e

#(s) s
> (/ e_¢(t)dt> min  f(t)e?™

s+E\J_1 s—1<t<s

(10.37)

for s > sy + 1. For the last integral, by (I=30), we have

s e(b(s) s oL
5) / O — € ( / e—¢<t>¢’(t)dt)e ()
s—1 5(;) s—1

$(s)—o(s—1)
e -1 o
=————— ¢\ for s> s(c, k).
£) '
By Taylor approximation, (IIZ34) and (IMZ34), for some o € (s — 1, s), we have
1

(s) = 6(s = 1) = ¢'(s) + 5¢"(0)
= g(;) + g + O(i) for s > s1(c, k).

SLEIHE 5 A

Therefore, since
%> slogs for s > s1(e, K),
by using the definition of £(£), we have

s
K

s E()t+s
€¢<s>/ ety —
s—1 f(?)
65(%) _ 1(35*0(%)
£(3)
5 p5+0(3)
KR

O

for s > s1(c, k).
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On inserting this estimate into (IIZ37), we have

1 c 1
f(5)6¢(§) 2 7654‘0(2) min f(t)ed)(t)

14 % s—1<t<s
> et % S_rlrléi?gsf(t)e¢(t) for s > s1(c,k, E, sg).
with some C' = C(E, k) > 0. By taking
c=C+1,
we arrive at
(10.38) f(s)e?® > e* min F)e® for s> s,(k, E, s0).

We refer the s;(k, E, sg) in (IIZ38) as s; below.
We now prove the assertion. Since log(s+e) < log s for s > e, it suffices to show

(10.39) f(s) > Lexp( /s§(i>dt - clogs) for s > sq,

where

L= min

?(s)
s1—1<5<s; f(s)e '

Indeed, for the original assertion with s > s, we can replace ¢ by some larger value.
Assume that (I339) does not hold. Then, there should be some s > s; with
f(s)e®™) < L.
By the continuity of f(s)e¢(s), we can take smallest 5 > s; with
F(3)e?® < L.
By the minimality of s and the definition of L, we have
F()e®D > L fors; —1<s<3
By (II38), We then have

which is a contradiction. Therefore, the assertion must be true. (Il

It is useful to prove an asymptotic estimate for the integral
s t
fo()
" K

Proposition 10.23. For k > 0 and s > max(k,e°), we have

S [t log 1
/ &l — dt:slogs+sloglogs—slogem+SOg ogs+0 u ,
H K log s log s

as given in the next proposition.

where the implcit constant depends only on k. Consequently, we have
s t
/ {()dt > slogs+ sloglogs — slogek
K
K

for large s > sy(k).
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Proof. By changing variable via t = ku, we have

/ f(i)dt = /Q/N E(u)du = H/R &(u)du + O(1).
K 1 e
By using [[1] of [Proposifion 10.20, we have

s z log
/ f( )dt—ﬁ/ <logu+log10gu+ gogu)du

£ 2
—|—O<1—|—n/ (loglog“> du).
o© logu
Then, by using the formulas

/@/Klogudu:ﬁ( log—)+0()

= slog s — slogex + O(1),

" £ x d
H/ loglog udu = Kk [u log log u} — K/ Y
e ¢ e logu

;)
)

KJ/N loglogudu sloglog s O(sloglogs ~ loglogudu)

3

= sloglogz +O<

= sloglogs+ O (

e logu log s (log s) ¢ (logu)?
sloglog s (sloglogs)
= . O ———%
log s (log s)
and
/ (log logu> / / < Vit s(log 1og23)2 - s(log 10g§)2 |
e logu (log s) (log s)

we obtain the assertion. ([l

10.10. Dichotomy in the decay of solutions. We now consider the decay of
the solutions R(s) of the original delay-differential equation with the aid of the
standard solutions r, ,(s). As a result, we prove that one particular solution can
be distinguished from the others by checking the decay as s — oc.

Lemma 10.24. For R € DDE(a,b,8) with 8 > 1, if

(R,rq)(s) =0
then, we have

R(s) < exp(—slogs — sloglog s + slogelb|)

for s > max(e®, 8), where the implicit constant depends on R, a,b.
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Proof. Note that if b = 0, then (R,r,;)(s) = 0 gives sr,,(s)R(s) = 0 and so
R(s) =0 for s > . By the assumption (R, r)(8+1) = 0 and Cemma T 1, we have

srab _b/ abt+1 ()d

By the asymptotic formula

(s =5 (1+0( 1)

given as (I1H) of Proposition 10.0, we have

ot (1 + O(i))R(s) = b/:1 gotot (1 + OC))R(t)dt.

By taking the absolute value, we have

o (10(3) )imel < (1o (3) ol [ Rl

and so there is a constant E depending on a, b such that

(s — E)|R(s)| < |b|/ (t)|dt for large s.

Then, the assertion follows by Cemma TO 21 and the latter half of [Proposition 10.23.
O

Lemma 10.25. For real numbers a,b, 8 with 8 > 1 and functions
R € DDE(a, b, 8),

assume that the follwing are satisfied:
(1) We have b > 0.
(2) For the standard solution r(s) = r,(s), we have
(R,r)(s) =0.
(3) We have r(s) > 0 for s > j3.
When the initial conditions
R(s) is not constantly zeroon f—1<s < f8
{ R(s) >0 forf—1<s<pf

Then, we have

loglog 3
R(s) = exp| —slog s — sloglog s + slogeb+ O 5708 0895
log 2s

for s > (8, where the implicit constant depends on R.

Proof. By CemmaT0TH, we know that R(s) > 0 for s > 8. By the continuity, we
may assume s is sufficiently large. By [2], we have

S

sr(s)R(s) =b r(t+ 1)R(t)dt for s > .

s—1

By and the positivity of R(s), we have

(s+O)R —b/ R(t)dt for s > f.
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Therefore, by CemmaTO 21 and CemmaTO 27, we have

R(s) = exp(— L g(i)dt + O(log s)>.

Then, the assertion follows by [Proposition 10-23. (]

Lemma 10.26. For R € DDE(a,b,8) with 8 > 1, if
(R,r)(s)=C

R(s) = s~ (@t (c +0 C))

for s > 8 where the implicit constant depends on R, a,b.

then, we have

Proof. We prepare a preliminary estimate. By the assumption, we have
srqp(s)R(s) = b/ rop(t+1)R(t)dt + C  for s > .
s—1

By the asymptotic formula

rasls) =5 (140( 1)

given as (III3) of [Proposition 10.0, we have
s t+1 1
sR(s) = b/ MR(t)dt + s (ot (1 +0 ())
s—1 Ta,b(s) S
and so

8 t+1
SPR(s) — C = b / Fas D bt poy a4 o(i)
s—1

ra,b(s)

By taking the absolute value, we have

s dt 1
s R(s) - O] < |b|/ 4R Y
s—1
S d 1
< / t“TPR(t) — C|= + =
s—1 t s
and so
s dt
a0) R < s [ e TRG -0l 1),
s—1

for s > 5+ 1 with some constant L > 1. We now prove the assertion. It suffices
to consider the range s > 4L. Assume that the assertion does not hold. Then, we
have some s > 4L such that

s|s"™R(s) — C| > AL with A := max (4, max s|s"TPR(s) — C|> > 1.
B<s<AL

Take the smallest such s > 4L, say s = s;. Then, by the minimality of s,
s|s"TPR(s) — C| < AL for < s <s.
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Thus, by (I0Z0), we have

dt 1

S1
AL < s1|siR(s;) — C| < AL*s, / i L= 1AL2 + L
s1—1 S1—

and since s > 4L, we have
1 2 1 3
AL< —AL"+L=-AL+L<-AL
— 2L + 2 th= 4~
which is a contradiction. This completes the proof. (I

10.11. Local behavior of solutions. In CemmaTO 28, we estimated the decay of
R € DDE(a, bB) with vanishing Iwaniec paring.

Lemma 10.27. For real numbers a,b and 5 > 1 and functions
R € DDE(a, b, 8),

assume that the following holds:

(i) We have a,b > 0.
(ii) We have

forf—1<s<p

R(s) is not constantly zero
R(s) >0

(ili) The Iwaniec pairing vanishes, i.e. (R,r)(s) = 0 with 7(s) := 1, ,(s).
(iv) We have r(s) > 0 for s > 3.
We then have

sR(s) < bR(s — 1)(1 + C)) for s > B +1,

where the implicit constant depends only on R.

Proof. By [}, [d], and [iv], we can apply Cemma T0 T3 to R(s) and conclude
that R(s) is positive, continuous and decreasing for s > (. Thus, it suffices to
consider large s > sq(R) > f. Since (R, 7r)(s) =0,
sr(s)R(s) = b/ r(t+ 1)R(t)dt for s > sg.
s—1
By Proposition T0.6, this gives

oo o)+ (1))

Since R(s) is decreasing for s > 8 as checked above, we obtain the assertion. [

Lemma 10.28. For real numbers a,b and 8 > 1 and functions
R € DDE(a, b, 8),

assume that the following holds:
(i) We have a,b > 0.
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(ii) We have

forf—1<s<p

R(s) is not constantly zero
R(s)>0

(ili) The Iwaniec pairing vanishes, i.e. (R,r)(s) = 0 with 7(s) := 74 ,(s).
(iv) We have r(s) > 0 for s > .
We have
W, (s) = R(s)e¢+(s) is increasing
{ W_(s) == R(s)e®~* is decreasing
for s > B with some sufficiently large ¢, = ¢4 (R) > 1, where

Gu(s) = /bsﬁ(z>dticis.

Proof. Write
A=a+b>0.

Note that Cemma 1013 and the assumptions [1}, [ii), and imply that
R(s) > 0 for s > 8. We first give some preliminary estimate. We shall use
so = sp(R) to assure various s-variables are large in the sense s > sy. However, in
this proof, the implicit constants and the constant s; may depend on R but should
be independent of c,. By [Proposition 10.6, we have

(s7(5)) = ar(s) + br(s+1) = " ()\ n C))
r(s) = sr'(s) _ (sr(s) —r(s) _ e ()\ L (1>)

S S

Therefore, we have

- (s +1) _ (s+ Dr'(s+1)

(log (s + 1))

r(s+1) (s+1)r(s+1)

(10.41) _(a=Dr(s+1)+br(s+2) A-1 +0(12>

(s+Dr(s+1) s

and

(logr(s+ 1))"

((a— Dr(s+1) +br(s+2))/
sr(s+1)
a—1 r(s+2) Y\
( s T bsr(s + 1))
a—1 sr'(s+2)r(s+1)—r(s+2)(sr(s+1))

TS b (sr(s+1))°

a—1 (A= 1)s22 — A2 1§22
=—— Tb 2X +0 52X
S S
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s0
(10.42) (logr(s +1))" = —)‘8_2 ! +O(813>.

For the derivatives of ¢ (s), we just have

(10.43) ¢le(s) = 5(2) +ey and ¢lL(s) = 25(2)

Since

we have

(10.44)  (logWy(s)) = Z((j)) +l(s) = —bRs(;(;)l) +§<f\> ey — %

We now assume that § =35, > s,(R) >  + 1 satisfies

(log W.(5))" =0

(the value of sy(R) will be made large depending only on R) or, equivalently,

bR(s—1) (s _a
By CemmaTO 27, we have
s 1
Write

Yi(t) = ¢+(t) —logr(t + 1).

Our next preliminary estimate is an approximation of the integral

/ r(t+1)e ?=Wap = / P
-1 -1

By using (), (I23) and Taylor’s theorem, for s — 1 < ¢ <'§, we have
t A—-1 1
o) e eo(d)
b t S

(3 t—5,(35\ (t—=37,(c\ Ar-1 1
=e(5) 2o 5 (5) e (5) 5 o3

with some o € (5 —1,3) and and so by [Proposition 10.20, we have

(10.47) w;[(t)f(s>ici+t§~)\+1+0( ! )

b S slogs

53
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By using (I4H), we have
§<S> j:ci+7t_s_~)\+1 —f< > ci+0<l>
b S S
1

(10.48)

for s —1 <t <3 since 5> sg(R) and so we obtain

e (t)

(10.49) (5(5) ici+t_§_;+1> (”O((slog”)(l(f) f)))

for s—1 <t <3 By (IIZH) and (MIZR), we also have

S
bei2) (5@@ .0

for §—1 <t <5 since § > sy(R). By (), (I0Z3) and [Proposition 10.24,

(10.50) (
(

(10.51) Wl(s) = ig(i) (logr(s + 1)) < %
By Taylor’s theorem, we have
(T 2
be(t) = v G + (- G- -1+ Dy o)

for §—1 <t < 3§ with some o € [§— 1,¢]. Thus, by ([IIZ7) and (51),

(10.52) Vi) =Pe(E -1+ (- (1) <5<i> = Ci) * O@)

for s —1 <t <. By integration by parts with noting (III80), we thus have

/S e Vg — — /S (e_d’i(t))lixdt
-1 -1 Yo (t)

_ e ¥x(3-1) B e~ V=(®) B s (0 ¢ (t)
ViE-1) W) S (vl (t))
By (MZR) and (II49), we have

e ¥=(6-1) e ¥=(6-1) 1
(o)
Pi(s—1) &(3) +cex—% (slogs)(& (5) =)
By (1), (M50) and ([I5H2), we have
e ¥+ B eV E=D=E(F)Fer+0(})
U4 (3) E(3)tex—3
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Also, by (IIZ3Y), (050), (HD) and (M52), we have

/F‘§ o0 w}l(t) it < — e_f’i(s_l) ; /~ o~ (t=G=D)(E(D)Ees) gy
-1 (¥ (1)) s€(3) £ex)” S5
e~ ¥ (3-1)
S(EG) £ex = DEG) £ew)”
By combining the above arguments, we have

5 . e*#’i(;*l) . o1
/ e—dli( )dt =— K (1 _ e—E(g)Ici-F (%) + E(g’))
-1 §(3) £er — 2

<

with
1 1

= 3 t =3 :
(3log3)(£(5) £ex)  B(E(5) £es)?
By the definition of & (%) and [} of [Proposition 10.20, we have

E(5) <

e _ _&() eTETOR petetol®

S 1 €(}) s
Therefore, we obtain
5 —¢4(5-1) cs+0(%)
(10.53) / e V=0 g — e * ( _ gﬁ%
51 &( s &(3)

DELIES

+ E(§)>.

55

We now prove the assertion. We first consider W, (s). By (I24), by taking ¢,
sufficiently large, we can make (log W, (s))" > 0 for 3 < s < s, for sufficiently large
so = so(R) > + 1. We assume to the contrary to the assertion that W, (s) is not
increasing. By the continuity of (log W+(s))/, we can then take the least s > s
with (log W, (3))" < 0 and such chosen 3 satisfies the condition (IIZH). We then

have
W, (s) is increasing for 8 < s < 3.
By [i], [ifi] and [i7], we have

sr(S)R(5) =b i r(t+ 1)R(t)dt

(10.54) = b/ r(t+ D)W (t)e +Dat
5—1

sz+(:§—1)/ e P+ ®qy,
5—1

By using (IM53) and (MI54),

T 1)e ¥+G-D —c4 +0(3)

g,r(g)R(g) > bWJr("; 1)6 ( _ bei
£(3)

;! e to)

_ br(s)R
CHETE

A
+C+_§
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By using (I23) and ([028), we then have

f@ﬂw+—%< hetO )
>3 |(1l—z—+—+F
T ) ey —2 5 £(3) )

b 1 be o+1O(3)
10.55 =(1+=———-— l1-=————+F
(10.55) ( sam+w+—§>< STEy <a)

since 5§ > sg(R). With the choice of the sign + = +, by [Proposition 10.20, we have

1 1 1
E(5) <« + < < 1.

(Slogd)(E(F) + o) 5EG) +ep)”  (Blogd)(E(F) +e4)
Therefore, by (IIBH), we have

15142 1 —b6f+o( L >
- 5E(G)+ey—2 5¢B) (slogs)(&(3) +cy)
1b 1 be

25 e -3 53
since § > so(R). For ¢, > 48, since
4 8 16 1 16 1

e =< <2 <2 <
er b Grlte Tl (e - 5)
b

and sy > s¢(R), we then have

1b 1 1b 1
L>1+ 5= 5 N A
258(3)tey—5 3585 tep—3
10 1
1+ = ,

T 65 e -3
which is a contradiction. Thus, the assertion holds for W (s).

We next consider W_(s). By (IIIZa), by taking c_ sufficiently large, we can
make (logW_(s))" < 0 for B < s < s, for sufficiently large s, = so(R). We assume
to the contrary to the assertion that W_(s) is not decreasing. By the continuity
of (logW_(s))’, we can then take the least 5 > s, with (log W (3))" > 0 and such
chosen s satisfies the condition ([IIZ4H). We then have

W_(s) is decreasing for § < s <.
By [, and [iv], we have, we have
S ()RG) = b / r(t+ 1) R(t)dt
-1
iy / r(t+ W ()e Dy
5—-1

s
ng_(E—l)/ eV~ Wy,

s—1
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By using (I313), we then have

- PW_(5—1e V-V /1 petetO)
SE)RE) < T s 2 1 EG)
(5)*07*% s &(3)
¥ +c_+0(%)
- rORE-D (1 e T E(§)>.
§(3)—c_—2 5 &(3)
By using (23), we then have
5 _o _a +e_+0(3)
1< 5(,313) = ;(136 = +E(§j>
(3) —c-—% 5 &(3)
b 1 b e+c,+0(%)
(10.56) = <1 + ~§) <1 -z T E(é})
55(5)—07—% 5 &(3)
b 1 betT
< 55(5)—07—% 5 &(3)
With the choice of the sign + = —, by [Proposition 10.20 and (IZH), we have

1 1
= T + =
(slogs)(€(5) —e-)  s(&(5) —c-)
Therefore, by (IIBH), we have

E(s) < 5 < L.

1
) —c-)

@}
—~
A
—~
(S IV

and so by taking ¢_ > 1152 and using

1 - 1 1 C_ 2
CeT > (=) > >
46 2 2<4) >9c_ >3+ 6¢_,
we have
1 1 1 1
3 <73 X = 25 T
§(3)—co T E&(F)—e——5  &(3)1- =1
&(x)
1 1 346c. _lew _
< T = +§c gfeg for s > so(R).
ﬁ(g)l—z*Jrg £(3) 4¢(3
- 2
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1Ae?
g -5 7«7’8'
85&(3)
since § > sg(R). This is a contradiction. This completes the proof. O

Lemma 10.29. For real numbers a,b and 5 > 1 and functions
R € DDE(a, b, B),

assume that the following holds:

(i) We have a,b > 0.
(ii) We have

R(s) is not constantly zero
forf—1<s<p

R(s)>0
(ili) The Iwaniec pairing vanishes, i.e. (R,r)(s) = 0 with 7(s) := 7 ,(s).
(iv) We have r(s) > 0 for s > .
Then, we have

R(s—1) = %R(s)(s log es) exp <o<

where the implicit constant depends only on R.

loglog 3s

f > 1
log 2s >) ors=f+1,

Proof. Note that Cemma 1014 and the assumptions [1), [, and imply
that R(s) > 0 for s > . Thus, by the continuity of R(s), we may assume that s is
sufficiently large, say s > so(R).

We use Cemma TOZ8. Under the notation of Cemma TO 28, we have

(logW,(s)) >0 and (logW_(s)) <0 for large s.
By (232) in the proof of Cemma T 28, this implies
bR(s — 1) s
2 (2 1).
i ~<(3)+ow
By Proposition 10-20, this further implies that

Z’MR(—)U - <loges>(1+0<%>>

and so the assertion follows for large s. O

11. CONVERGENCE PROBLEM

In this section, we discuss the convergence of the series

+
T(s) = Y ful9)
n>1
n=v4 (mod 2)

defined in (A3). We assume

k>0
throughout this section.

We first show that the convergence of the series T' i(s) in the appropriate range

s € I is independent of the variable s and solely depends on f.
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Lemma 11.1. For any s, € I, the following are equivalent:

(i) The series T (sy) or the series T (sq) converge.
(ii) Both of the series T*(s) converge for any s € I..

Proof. The implication — [[i] is obvious and so it suffices to prove the reversed
implication [[] = [iJ. Assume that the series T~ (s,) converges with s, € I. By

[Proposition 9.2, for any positive integer N, we have
+
s6T (s0) > 80 Z fn(s0)
2<n<N

n=vy (mod 2)

> / Z fn—l(t - l)dt’lQ
max(sg,f+e+)  2<p<N
n=vy (mod 2)

o0
max(sg,B+e4) 1<n<N-1
n=vs (mod 2)

By taking the limit N — oo with the monotone convergence theorem, we have
/Oo TH(t —1)dt"™ < s§T*(sg) < +00.
max(sg,B+e4)
We thus have the convergence of T (s) for
5 > max(sg, 3 +ey) — 1 =max(sy — 1,5 —e)
By the induction, we find that 77 (s) is convergent for
s> max(sg—n, 5 —e4)

for any n € N and so for s > 8 — ;. What remains is the convergence of T~ ().

By Proposition 9.2, for any positive integer N, we have

Y Y RO-E+DT Y B+

2<n<N 2<n<N

n=v_ (mod 2) n=v_ (mod 2)

B+1 B+1

= / fn—l(t - 1)dtﬁ = / Z fn(t - 1)dtm
B 2<n<N B 1<n<N-1
n=v_ (mod 2) n=v, (mod 2)

However, since f,,(s) is constant on § — 1 < s <+ 1 for odd n, we have

B Y f(B)

2<n<N
n=v_ (mod 2)

<SB+DT Y. LBFB+DT > LB+

1<n<N-1 2<n<N
n=v, (mod 2) n=v_ (mod 2)

< B+ TTB) + B+ T (B+1)
and so
0< B"T7(8) < (B+1)TT(B) + (B+1)"T™ (B +1) < +oo.
Thus, T (s) converges even at s = 5. This completes the proof. [
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In order to describe the range of £ for which T* (s) converges, we introduce some
auxiliary functions and parameters. We use two standard solutions

P(s) =pu(s) =1, x(s) and q(s) = qu(s) =1, 4x(5).
Recall that their defining equations are
{ (sp(s)) = kp(s) — kp(s + 1)
(5q(s)) = kq(s) + kq(s +1).
We may rewrite these equations as
sp'(s) = (k — D)p(s) — kp(s + 1)
{ 5q'(s) = (k — 1)q(s) + kq(s + 1).

(11.1)

or

(11.2) { (s p(s))" = —ks""p(s +1)

(s'7"q(s)) = +rs "q(s + 1).
The function p(s) is positive for s > 0 while the function ¢(s) may have zeros.
Thus, let p be the largest zero
p = py = sup{s € (0,400) | g(s) = 0},
where we use a convention p,, = 0 if ¢, (s) has no zero.
We prepare one observation:

Proposition 11.2. Fors € (p—1, p)N(0, +o0), we have ¢(s) < 0. Consequently,
if there is the second largest zero p; of q(s), then we have p; < p — 1.

Proof. When k < %, by [Proposition 10.14, ¢(s) has no zero and so p = 0 and the
assertion is vacuous. We thus can assume x > % and so by [Proposition [0.14, p is
a genuine zero of ¢(s). By (IO) with s = p, we have

pd (p) = (k= D)g(p) + ralp+1) = rg(p+ 1) > 0
since g(p + 1) > 0 by the maximality of p and [Proposition 10.6. Thus, ¢(s) is
negative for s slightly smaller than p. Assume to the contrary to the assertion that
q(s) has a zero in (p — 1, p) N (0, +00). Since ¢(s) is negative for s slightly smaller
than p, we can take the second largest zero p; of ¢(s) with p; € (p— 1, p) and then
q(s) < 0 for s € (py,p). By (I0) with s = p;, we then have

p1d (p1) = (k= D)a(pr) + ka(py + 1) = kq(pr +1) > 0

since p; + 1 > p and so the maximality of p gives g(p; + 1) > 0. However, this
implies ¢(s) is positive for s slightly larger than p;. This is a contradiction. ([

We further consider the function
D(s) =D,(s) = (s — 1) "py(s — 1)g(s) + (s — 1) 7"q,(s — 1)p,(s)

defined on (1,+00). When x < 1, this function D(s) can be defined even for

[1,400) i.e. even at s = 1 by its limit value from right
(113) D(l) = (}{%((S - 1)1_Hpi<;(8 - 1)Qn(8) + (8 - 1)1_KQI<;(8 - 1)pn(s)>

Indeed, by [Proposition 10.10, we have
(0—1)""plo—1)=(c—1)""r, (0 —1) = e T(1 - k) as o \(1
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and so it suffices to consider u(o — 1). When x = %, by [Proposition 10.8, we have
(0-1)""g(o-1)=(c-1)" " relo-1)=(-1""=0 aso\, L
When & < % and so 2k < 1, by Proposifion 10.1(, we have
e"'T(1 - k)
I'(1—2k)

By combining the above observations, we conclude that (I1=3) exists. Based on this
observation, for simplicity, we use the abbreviations like

(6 - 1)1_Kpn(/6 - 1) = 511\1‘1}3(0' - 1)1_Kpn(0- - 1)7

(5 - 1)171%%%(6 - 1) = lim (J - 1)17qu(o— - 1)
s\
In this way, we consider D(s) as a function on the interval
{ (1,400) if K> 3,

: 1
[1,+00) ifk < 3.

(0—1)'""q(c—-1)=(0—1)""r, (0 —1) = as o\ L.

The non-vanishing of D(s) is as important as p in our convergence problem. We
thus check that D(s) has at most one zero in (p, +00).

Lemma 11.3. For s > p, we have
/
<q“) =0
p(s

(s)

(s)

Consequently, the function

b~

is strictly increasing for s > p.

Proof. Follows by Cemma TO T8 since p(s) =1, _,(s) and q(s) = 7, 4.(s). O

Proposition 11.4. The function
D(s)
p(s)
is strictly increasing for s € J N (p, +00).

Proof. We have
D(s)
p(s)

By (12), we have

(50

=(s—1)""p(s — I)j)g; +(s—1)'""q(s —1).
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for s € J N (p,+o0) by CemmaTT3. This completes the proof. O

We then define p to be the unique zero of D(s) in J N (p, +00) if such zero exists
and p := max(p, 1) if otherwise. By and

D(s) ~ 25" " as s — o0
follows by (IIIR), we find that
D(s) >0 <= s>p

provided s € J N (p, +00).

Proposition 11.5. We have p < p < p+ 1.

Proof. The inequality p < p + 1 immediately follows since if s > p + 1, then
p(s),q(s),p(s —1),q(s — 1) > 0, and so D(s) > 0.
Also, p < p follows by definition. This completes the proof. O

The following two results are mentioned without detailed proof in Kai-Man
Tsang’s paper.

Proposition 11.6. If the series Ti(s) converges for s € I, then > p.

Proof. Assume that the series T (s) converges for s € I.. We then should have

the properties of Ti(s) proven in [Proposition 9.4 and [Proposition 9.4. We further
use the functions P(s), Q(s) defined by

{P(s) =T7"(s) =T (s)+2
Q(s) =T"(s) + T (s)

for s > 38

and
s"P(s) =s"Q(s)=A for f—1<s<p
as in (M) and (MIH). We then have

S dtﬁ/

SKQ(S):A—B—A/ﬁ (tdtl)”

for f<s<p+1

and

{SP () = —wP(s) +rP(s=1) . (B,8+1)U (B +1,+00)

sQ'(s) = —kQ(s) — KQ(s — 1)
as seen in (II4) and (@A), where A, B are given by the equations
A=(B+1)"TT(B+1)+(B+1"
BT (B)=p"-B
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as in Proposition 9.4. Therefore, p(s), q(s) are the adjoint solutions of P(s), Q(s),
respectively. By CemmaTO 1, we may write

Cp = (P,p)(s) = sp(s)P(s) + k / :p(t +1)P(t)dt,

Co=(Qu)9) =su()Q(s) — x [ at+ QU

for s > 8. We then prove
Cp=2 and Cg>0.

By of [Proposition 9.4, we have P(s) — 2 as s — co. By Cemma T 28, we have
P(s) ~Cp as s = oo and so Cp = 2. By of [Proposition 94, Q(s) is positive

for s > . Also, by definition, A should be positive and so by the definition of the
extension of Q(s), we find that Q(s) is positive for s > f—1. Thus, by Cemma T 28,
we should have Cg > 0 since otherwise ((s) is negative for large s.

We first prove that 8 > p. Assume to the contrary that p > 5. In this case, we
have p # 0 and so p is a genuine zero of ¢(s). For s > p,

0< Co=sa(e)Q(s) — [ alt+ QU
and so

e+ D@ <k [ gt 1DQUME < sq(51Q()

P
H/
=3

for p < s < p+ 1. Since g(p) = 0, by taking the limit s \, p, we find that

n/p gt +1)Q()dt <0

_1
2

However, by the maximality of p, we have g(t + 1) > 0 in the above integral and
also Q(t) > 0 in the same integral as seen above. This implies

0<x / Tt DU < sa(5)Qs),

-1
which is a contradiction. Therefore, we should have 8 > p.

We now prove 8 > p. By the previous paragraph, we may assume 8 > p and so,
by the maximality of p, we have ¢(s) > 0 for s > 8. By Lemma T2 and

P(s):sé for —1<s<p,
we have
2=Cp = Bp(B)(P(B) = AB™") + A(B = 1)'"p(5 — 1).
By the formula

S odt”
SHP(S):A—FB—FA/ —— for f<s<B+1,
s (t—1)
we may rewrite the above formula as

2=Cp=p""p(B)B+AB—-1)""p(B-1).
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Therefore, we have

B o AB 1) —
(11.4) B=l (2 A(B—1) " p(B 1)).

(Note that p(j) # 0.) By Cemma 102, we have
0< Cq=Ba(B)QB) —AB™") + A(B— 1) "q(B - 1).

Using the formula
" S dtﬁ
s"Q(s)=A—-B—-A| —— for f<s<f+1,
s (t—1)
we then have
0<Co=—0""q(B)B+AB~1) "q(5-1).
By substituting (I4), we obtain

q(/@) 1—k 11—k
and so
q(B) 4B) (5 y1-r 5 — D) (8 —
2p—(5) < A<p(5) B-1)""p(B-1)+(B-1)""qB 1)>

_ BB~ 1)a(B) + (8- 1)'""a(B~ p(B) _ ,D(B)
p(B) p(B)
Since 8 > p, this gives

D(B) > Za(B) > 0

which implies 8 > p since 5 € J. This completes the proof.

Lemma 11.7. Fort > p, the function

srr st "p(s)a(t) + 57 "a(s)p(t)
is strictly increasing for s € (0,+00) N [t — 1, +00).

Proof. By (072), we have
(' "p(s)q(t) + s "q(s)p(t)) = ks " (q(s +1)p(t) — p(s + 1)61(8))«

By CemmaTT3, we have
o(s-+ 1p(t) = s + ) = ool + 1)

for s +1 > ¢ > p. Thus, we obtain the lemma.

ds+1)  qt)
EEY p(t>> >0

O

Proposition 11.8. Assume that k > 0 and 8 € J satisfies § > p. Then, the
series T+ (s) are convergent for s € I, and also we have

(i) We have
1P(s) — 2|, Q(s), T*(s) < exp(—slog s — sloglog s + slog ex)

for s > max(e®, 8), where the implicit constant depends only on k, 3.
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(ii) We have

2q(B)
A=—-=>0,
D(B)
28— 1) (8- 1)
/Bl—KD(B)
for the constants A, B given in [Proposition 9.4. Also, we have

A>(B+1)".

(iii) For the Iwaniec pairing, we have

(P,p)(s) =2 and (Q,q)(s)=0 fors>p.

(iv) We have
T*(s) = Q(s) >0 fors>f
and
0<T*(s)<Q(s) forsely,
where the implicit constant depends only on k and (3.

Proof. We prepare the auxiliary constants and functions

~1 ~ ~
, T7(s), P(s), Q(s),
which are turned out to coincide with the original constants and functions

A, B, T*(s), P(s), Q(s).

A, B

9

We let
. 2408)
A= D)
~ (B-1\"T"2(8 1)
B'(xa) D)

which are well-defined since p(83), D(8) > 0 by the assumption 8 > p. By tracing
the definition of 7% (s), we define the continuous functions 7= (s) for s € I by the
initial conditions

STT(s)=A—s" forf—1<s<pB+1,
(11.5) ~ B
BT~ (B) =p"—-B

and the delay—differential equation
(11.6) (s"T%(s)) = —ks" 'TF(s—1) fors>pB+e,.
We then define U(s), V(s) by

Bls) e T (s) — T (s
{Ij(S) '_T (s) T () +2 for s >
Q(s) =T"(s) + T (s)
and
s"P(s) =s"Q(s) = A for f—1<s<B.
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By arguing similarly to the proof of [Proposition IT.6, we have
{<137p><s> = +6""p(B)B + A5~ 1)'"p(5 - 1)
(Q,9)(s) = =B""a(B)B+ A(B - 1) "q(B - 1).
By substituting our choice of ﬁ’ é, we get

(Bopy(s) = 28— "a(B = Dp(H)

D(B) D(B)
and
~ _2(B=1)"g(B—1)q(B) | 2(B-1)"""q(B—1)q(B)
<qu>(3) - D(ﬂ) + D(ﬁ)
so that
(11.7) (P,p)(s) =2 and (Q,q)(s)=0 fors>}p.

Since the adjoint equation (IOI) gives
sp(s) = —H/S 1p(t + 1)dt + (constant) for s > 3
s
and then shows
sp(s) = —K/slp(t+1)dt+1 for s> f

Thus, we can rewrite (I0—4) as

(11.8) (P —2,p)(s) = (Q,q)(s) =0 for s > B,
We next prove the following claim.

Claim 11.9.

(a) We have

|P(s) —2| < Q(s) fors>p—1.
Moreover, there exists a real number n = n(x, ) € (0,1) such that
[P(s) — 2| <nQ(s) fors > p.

Consequently, T=(s) > 0 for s € I.
(b) We have
|P(s) — 2|, Q(s), T=(s) < exp(—slog s — sloglog s + slog ex)

for s > max(e®, f).
(c) We have

s"TE(s) :/ TF(t —1)dt" fors>B+ey.

Proof.

The positivity of 7% (s) follows from |P(s) — 2| < Q(s) since then

T*(s) = %(i(]s(s) -2)+Q(s)) >

(Q(s) — |P(s) —2[) > 0.

|~
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Thus, we prove~|ﬁ(s) —2| < Q(s) for s > B—1 and there exists 17 € (0,1) such that
|P(s) — 2| < nQ(s) for s > f. We want to use Cemma TO 17 with

a=b=r, R (s)=P(s)—2, R (s)=Q(s).
To this end, we need to check |P(s) — 2| < Q(s) for 8 —1 < s < 8. Clearly,

15(5)72:§72<8é:@(5) for f—1<s<p.
We thus prove the inequality
—(P(s)—2) < Q(s) = s"< A
for B —1 < s < B. It suffices to show

(11.9) A= ?Jq((g)) > B".
For s > (8, by using Cemma 117 with ¢ = s, we have

D(s) = (s = 1)'"p(s = 1)a(s) + (s = 1) "q(s — )p(s)

< 25" "p(s)g(s).
By taking the limit s \, 3, we obtain
D(B) < 28" " p(B)a(B).

Therefore, we have
ﬂﬁ}
p(B)’

A 2B

D(B)

~—

™

By using the bound
p(S) :/ 67517&E1n($)d$ < / e 5 dp — -
0 0

S

we obtain (). This proves |P(s) — 2| < Q(s) for 8 —1 < s < . Then,
follows by Cemma TO T4 with recalling (ITH).

By and (IR), the assertion immediately follows for |P(s) — 2|
and Q(s). For T*(s), we can use

T*(s) = 5 (£(P(s) = 2) + Q(s)).

N | =

This proves of the claim.
By the delay-differential equation (IIB) defining 7% (s), we have

snfi(s) — U”fi(a) = / TF(t—1)dt" for B+ey <s<o.

S

By taking the limit ¢ — oo with [b), we obtain [c] of the claim. O
We now prove the convergence of T* (s). We consider the partial sum

Tn(s)= S fuls)

1<n<N
n=N (mod 2)
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as defined in (83). Note that by and of [Proposition 9.3, we have
(oo}
(11.10) s"Tn(s) = / Tn_1(t—1)dt" for s> +ey.
S

Since the terms of Ty (s) are positive and of Claim holds, it suffices to prove
(A111) 0<s"Ty(s) <s"Tt(s) forsel, and odd N > 1,
. 0 < s"Ty(s) <s"T (s) forsel_andeven N > 1.

We use induction on N.
Initial case N = 1. By the initial condition (1) and of Claim, we have
0<(B+1D)'TT(B+1)=A—(B+1)" andso A> (8+1)"
Thus, we have
0<s"T(s)=(B+1)" —s"<A—s"=s"T"(s) for f—1<s<pB+1.

Since T} (s) = 0 for s > S+ 1, by the positivity of f"r(s)7 the same inequality holds
even for s > 4 1. This proves (1) for the initial case N = 1.

Induction step from N — 1 to N with even N > 1. Assume that N > 1 is even and
(1) holds for N — 1. By (IIIM) and the induction hypothesis, we have
s"Ty(s) = /Oo Tn_1(t —1)dt" < /Oo TH(t—1)dt" fors>p
sincet —1>s— 1> —1 in the integral. By of Claim, we have
0< s"Ty(s) <s"T (s) fors>f.

By taking the limit, we can see this inequality holds even at s = 8. Thus, (II)
holds for the N-th case as well.

Induction step from N — 1 to N with odd N > 1. Assume that N > 1 is odd and
(1) holds for N — 1. We first consider the range s > 3+ 1. By (II10) and the
induction hypothesis, we have

§"Ty(s) = /OO T (t —1)dt" < /Oo T (t—1)dt® fors>f+1
since t — 1 > s — 1 > 3 in the integral. By of Claim, we have
0< s"Ty(s) <s"TH(s) fors>p+1.

We next consider the range § —1<s< 8+ 1. By of [Proposition 9.3, we have

sS"Tn(s) =B+ 1) Tn(B+1)+(B+1)"—s" forf—1<s<pB+1.
Since we have already shown (I for the current N and s = 5+ 1, we have

STa(s) < (B+1D)"TTB+1)+(B+1)"—s" forf—1<s<p+1.
By the initial condition (ITH) of T (s), we have

s"Ty(s) < A—(B+1)" +(B+1)" —s"
—A—s"=5"TT(s) forf—1<s<B+1

This completes the proof of (ITT) for the N-th case and so proves the convergence
of T*(s).
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Finally, we prove [1}, [iL}, and [iv]. By (™) and [b] of Claim, we have
0<T%(s) <TF(s) <Q(s) fors>p
and so
T*(s) < exp(—slogs — sloglog s + sloger) for s > max(e®, B).
Therefore, we should have
|P(s) —2|,Q(s) < exp(—slogs — sloglog s + slogek)
for s > max(e®, 8). Thus, [i] follows. By Cemma 1078, we should have [Tii), i.e.
(P,p)(s) =2 and (Q,q)(s)=0 fors>f.
By arguing similarly to the proof of [Proposifion 11.6, we can see
2= (P,p)(s) = +8' "p(f)B + A lim p(o —1)(e — D
0=(Q.a)(s) = =B""a(B)B + A lim a0 = 1)(o = 1),
By solving this system of equations, we obtain the first assertions of and so
A=A, B=DB, P(s)=P(s), Q(s)=Q(s).
The inequality A > (8 + 1)" can be derived by the positivity of T (s) as
0< B+ T (B+1)=A-(B+1)"
This completes the proof of [ii)]. Then, for s > g, of Claim implies

T(5) < Q) = 1 (@)~ 1Q()

1 2
< T Q) £ IPG) - 2) = T2 T4()
and

Q(s) >0 fors>p

and so follows provided s > 3. When 8 — 1 < s < 8 and & = +, we have

A A
TH(s)= % —-1< = =
()= % —1< 5 =Q0)
and so [iv]) holds even for § — 1 < s < 8. This completes the proof. O

Lemma 11.10. For s > 8 > p with 8 € J, we have the following:
(i) For s > 3, we have

Ti(s) < exp(—slog s — sloglog3s + slogek)

and

log1
Ti(s):exp —slogs — sloglog3s + slogex + O sloglog 3s ,
log 2s

where the implicit constant depends only on k and (3.
(ii) For s > S+ 1, we have

TE(s—1), TT(s— 1) < T*(s)(sloges),

where the implicit constant depends only on k and 3.
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Proof. By of Proposition 11.3, it suffices to prove the assertion for Q(s), i.e.
Q(s) < exp(—slog s — sloglog3s + slogek),

loglog 3
Q(s) = exp (—slogs — sloglog3s+slogen+0(w>>

log 2s
and
Q(s—1) < Q(s)(sloges).
Recall that (Q, q)(s) = 0 as in the proof of Proposition 11.8. Also, by (II3), of
[Proposition I1.8 and 8 > p, we have Q(s) > 0 for 8 —1 < s < . By Lemma 1024,
Cemma TO 28 and Cemma T 29, we thus obtain the result. O
12. OPTIMAL CHOICE OF 3
Proposition 12.1. For k > % and 8 > p, by [Proposition 11.8, we can consider

v(B) = sup{s € [B,+00) | I (s) = 0}.
Then, the minimum of v(8) over (3 is taken when 8 = p+1 with y(p+1) = p+1.

Proof. To make the dependence of F~ (s), T (s) on 3 visible, write
F (s)=F (s,8) and T (s)=T (s,5)
By (), we have

SF(s,8) = "1 =T (s,8)) = - P(S);s <) =B+A/,@s(tcitl)“.

Note that the constants A, B are indeed functions of 8 given by

24(5) (6— 1)1‘”2q</3— )
B)=Dg =4 PO={"3 D(5)
as determined in [Proposition IT.8. We first evaluate the value of vy(p + 1). Since

q(p) = 0 by definition, we have B(p+1) = 0. Therefore, we have F~ (p+1, p+1) = 0.
Since s — F~ (s, ) is strictly increasing, we find that v(p + 1) = p + 1. Therefore,
by the monotonicity of s — F~ (s, ), it suffices to show

F (p+1,8) <0 forp<p<p+l.
Since 8 < p+ 1< 8+ 1, we have

_ pEL gt
F (p+1,5)<0<:>3(ﬁ)+14(ﬁ)/ﬁ o <0
(B-1)""q(B-1) Pt
=TT AR +/5 - ="

We thus study

_B-D""gB-1 o dt”
G M =
By (I32), we have

(e
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_RB=1""¢(B) 87"(B) ~ (B-1) "q(B-1) kB "q(B+1)
(8" q(8))
kB R(B—1)'"g(B—1)-q(B+1)

B-1~ B q(B)”
and so )
R(B—1) "g(B-1)-q(B+1)
¢ (8) =~ -k 2 :
B~ "a(B)
By and the definition of p, we then have
O (B)>0 forp<f<p+l.
This shows
p(B) <¢plp+1)=0 forp<pB<p+1
and completes the proof. O
By [Proposition 12.1], we find that the optimal choice of § is

B=P.=p+1
since p, + 1 = 1, the least possible S if kK < % We therefore take 3 = p,. + 1 below.
We then check the behavior of 8 as k \, %

Proposition 12.2.

(i) For k> 1, we have B > 1.

(i) We have B —1 ~me” (25 —1)* and so B — 1 as k \, :.

Proof.

(i}. When s > %, by [Proposition 10.14, p,. is a genuine zero of the function

¢ (s) =y (s) and so p, > 0. We then have 8, = p, +1> 1.

[i). Consider the range % <k < %. We then have x +x —1 < 1. Thus, we can use
Cemma 104 with N = 1 with recalling Cemma T4 to obtain

1 (o)
4 (8) =T n(s) = P 7)/ (q)ﬁ(—x) - 1)e_sxx_2”dm for s > 0.
0

(1 -2k
By substituting s = p,, > 0 with recalling ¢,.(p) = 0, we have
1 oo
2k—1 —PrT _—2K
= b, (—x) — 1) P dz.
Pr 1“(1—%)/0 ( w(=2) = 1)e ™ e de
By changing the variable via x = pi, we have
]. o QK(ii) - ]' t
(12.1) o= — / < Bre >e t~"dt.
I'(1-2k) Jo (p%)

For 0 < z <1, we have

o (— 1 x Ein(z) 1 Ei o) Ei m .
p(z2)—1 e r Ein(z) 3 (ff(mnjr(fvl)))' <<l

3 3 - 3
X x X
m=0

since Ein(z) < Ein(1), where the implicit constant is independent of k. For x > 1,

P, (—z)—1 T1—et
”(i)<<x“<exp<n/ ¢ dt)+1> <1
X 0 t
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where again the implicit constant is independent of k. Therefore, we have

X

> (pb(_?)_l —r -k < L, _s _1
——t— e T e < e 71 427 ?)de < 1,
0 (5) 0
where the implicit constant is independent of k. Thus, by (I2),
P — 0 as Kk %
As x — oo, by Cemma 109, we have

P, (— T1—et T dt
M exp(fg/ € dt—/q// >
X 0 t 1 t
1 —t xr —t
1—
:exp(/i/ ¢ dt—ﬁ/ edt)
ot Lt
1 —t oo —t
11—
—>exp<f<;/ ¢ dt—m/ edt) =",
0 t 1t

On inserting this formula and
1

(1 - 2r)
into (IZZ), we therefore have

1
~ (1 —2k) asm\i

ol
2

pr ~T(1 — k)™ (26 — 1) ~ rie (26—1) ask\ %

and so
1o 1 ~ 2 1
pr ~Te (26 —1)F ~ e’ (26— 1)7 as K\ 5
since
1_ 1
(2K — 1)*lc 2= exp(—(% —1)log(2k — 1)) —1 ask\ 3.
K
This completes the proof. O

13. THE ERROR MAJORANTS 7~ (s)

Let 8 = p+ 1 as chosen in the previous section. In order to estimate the error

in the approximation of T (D, z), we need two more auxiliary functions
T*: (0, +0) — R.

In order to define these functions, we let
i 1
(13.1) R::{ £ ER>,

346 if0<k<i

with some small § > 0 and write

~

ﬂ = ﬁK, = BE
We may suppose

- N
(13.2) {BH B € (1,+00) if k> 1,

B,e(1,2) if0<k<

by taking § sufficiently small by Proposition 12.3.
Then, we require Ti(s) to satisfy the following conditions.

(:Izl) The functions 7 (s) are continuous on (0, +00).

1
2
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(?2) The functions 7 (s) are differentiable on (0, B+ HU (B—!— 1, 400).
(T3) The functions T (s) are solutions of the delay differential equations
(" TE(s)) = —Rs"TT (s —1) for s> B+ey.

T4) The initial functions of 7= (s) are given b
( given by

sgﬂf+(s):g for 0 <s<pB+1,

sgﬂff(s):ﬁ for 0 < s <.

__ with some suitable constants Aand B
(T5) The functions T (s) satisfy the decay condition

T*(s) = O(e™).
In this section, we determine the appropriate values of E,E and prepare some

lemmas on these functions T i(s). Since is linear, it is irrelevant to change

ﬁ, B by multiplying some non-zero constant.
As is done for T*(s), we define

(s)

{13 () =T (s) - T )
9) T -~ for s > 3.
Q) =T*(s)+T (s)
We then have

(57 P(s))’ = +75"P(s — 1) _
13.3 - “P : )
(13.3) {(5n+1Q(5))/ - 01 > B+

5E+1]3(s) —A-B+ E/j Lmdt

(13.4) 0 (t _Alg R B<s<B+1
S =A+B-A [ _“j)w dt

Thus, in order to keep (I333) even for s € (B\, B\—i— 1), we let

(13.5) sTP(s) = "1 Q(s) = A for 0 < s < J.

By recalling [1] of [Proposition 10.§, we next consider the standard solutions

p(s) =rz41,z(s) =1
q(s) = 7"%+1,+2(3)

of the adjoint equation

(13.6) {<Sﬁ<8>> = (R + 1)pls) — Ap(s + 1)

(54(s))" = (R + 1)q(s) + Rq(s + 1).
associated to ([333). We next determine the Iwaniec pairings
(P.p) and (Q.q)-
By CemmaT02 and (34), we have
(P.0)(s) = =BRB)B " + A(B - 1) BB - 1) = —F "B+ (5 - 1) A,
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since p(s) = 1. By and Cemma TO 28, we should have
0=(P.p)(s)=—B "B+ (B—-1)"A
We thus take E, B by
(13.7) A= (B-1)% and B:=j5"
which satisfies (P,p)(s) = 0. Similarly, we have
(Q.)(s) = +BAB)F " + A(F ~1)7"q(5 ~ 1) = 4(5) +q(B - 1).

~

By (3M) with s = 8 — 1 and [Proposition 10.17], we have

@) =270 =" (B ) =2 Vres(B 1),

R
By recalling the definition of q,,, 8., p., we have
(Q.3)(s) = 2( — 1)gz(pg) = 0

since py is, by definition, the largest zero of ¢z(s). In summary, we get

(13.8) (P,P)(s) = (@, 3)(s) = 0.
‘We have
(B-1)"

A =Q(s) forf—1<s<p.

(13.9) |B(s)| =

and @(s) is not constantly zero for B —l<s< B
Then, we have the following basic properties for " (s):

Proposition 13.1. For the functions T (s) defined as above, we have
(i) For s > 0, we have
TH(s)>0 and T7(s) =T (s) = Q(s),
where the implicit constant depends only on k and §.
(ii) For s > 1, we have
T*(s) < exp(—slog s — sloglog 3s + slog er)

and

~ N loglog 3
Ti(s) = exp(—slogs— sloglog3s+slogem+0(501§g(;gss)>,

where the implicit constant depends only on k and §.
(iii) For s > 1, we have

(s — DRI (s — 1) =< "% (5) (s log 3s),

where the implicit constant depends only on k and §.

Proof.
By [T4), (IZ3) and (I3373), the assertion is trivial for 0 < s < 3. It thus suffices

~

to consideer the range s > 5. We first prove that
(13.10) qls) >0 fors>p.



THE ROSSER-IWANIEC SIEVE 75

As we saw above, Proposition 10.11] gives

q'(s) = ri17(s) = 2Rz 7(s) = 2Rgz(s).
By the definition of B , we have
7(s)>0 fors>pB—1.
By (IC3W), we thus have

s — 1)&:(3 -1

o< = G(s— 1) +q(s) <qls) fors>j

as desired. Therefore, by (I3H) and (39), we can use Cemma T T4 to conclude
that there is n = (k) € (0,1) such that

|P(s)| < nQ(s) for s > .
We then have

7% (5) = TPE) LG 4 1Ps)) 2 L2100 for s>
and
7 () = LA 5 2@0s) — 1PGs)) > 25 20(5) > 0 for 5>
and so

This completes the proof.

[Gj., By (IZH), Q(s) > 0 for — 1 < s < 3. Hence, in the range s > 3,
and follows by [i] proven above, Cemma 11174, Cemma 1024 and Cemma 1024
with using (I3X) and (3TM). For the remaining range 1 < s < 3, the assertion
is trivial. For the remaining range 0 < s < 3, the assertion follows by the
definition (IZH) of the extended part of Q(s). O

We also need the following two inequalities:
Lemma 13.2. We have
s"TH(s) < "' TE(s) fors eIy,

where the implicit constant depends only on k and §.

Proof. When,@—l<s§,@+1§§+1, we have
S"TT(s)=A—s" and s"'TH(s)=A
as in (IOIH) and (C3H). Since A, A >0 and A > (8 + 1)", we have
A
0<s"TT(s) < 7 ST (s) for f—1<s<[+1.
By of and [[I) of [Proposition 13.1], we also have
s"T(s) < " T1TE(s) for B<s<B+2.
By the positivity of f,,(s), we thus have
(13.11) S"TE(s) < C- " TE(s) forse (B—1,8+2NIy.
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with some real number C = C'(k) > 1. By of [Proposttion 13- and [(T3),

—~ o~ o0 —~ o~ ~
(13.12) STT=(s) = ’/%/ t"TT(t—1)dt for s > .
S
By the convergence part of Proposifion 11.3, it thus suffices to prove
—~ ~ N
(13.13) s"Tn(s) < C-s* 1T (s) for s € Iy and N > 1,

where C' is the same one as in (I31). We use induction on N > 1.

Initial case N = 1. Recall that T} (s) is supported only on (8 — 1, 8+ 1] as stated in
Proposttion U-3. Therefore, (T3T3) follows by (IETT).

Induction step from N —1 to N. By (I3), we may assume s > 5+ 2. By [ii] and
of [Proposition 9.3 and Cemma TT 11, by integrating, we have

oo
s"Tn(s) = n/ "My (t—1)dt for s> B+ 1.
S
By (I332), we have

s>B+2>B+1
and so by the induction hypothesis and (I3T2), we then have

$" T (s) < /-c/ " Ty (t—1)dt

’ oo ~ ~ N—1
< c-n/ e — DRI ( — 1)at
S

)N

(s)

This proves ([313) for the N-th case. O

<C- E/ AT -t < ¢ ST

Lemma 13.3. For a real number 0 satisfying
(0,+00) ifk> 1,
0e 2
(3,+00) f0<k<3,
we have

0
PN Flt=1\" as
TP > () T e oz v

provided ¢ is sufficiently small in terms of 6 and k, i.e. 0 < § < §y(0, k).

Proof. By of and the defining equation of T i(s), we have
—~ o~ oo —~ ~
(13.14) STHIT(s) = 2/ t"TT(t—1)dt for s> B+ey.
S

Thus, the assertion is obvious for s > 8 + € since

0
t—1
— L.
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We thus consider the case f+¢e4 < s < B + e4, which occurs only if 0 < k < % In
this case, we have 5 =1, 1 < S < 2 and 6 > % Also, in this range S+ ¢4 < s <
B+ ey, as defined in [ T4), we have

ST (s) = BTHTE(D).
Thus, it suffices to show

o) 0
FHTEB) > 7 / (H) FTF(t— 1)dt.

1+E:t t
By (I313), we have
FHTEE) = (B4 e 1 THF+22) =7 [

Btey

o0

tRTT(t— 1)dt.

‘We therefore have

o0 0
BRHITE(B) — 2/ (H) FTT(t = 1)dt = R(IT — JF),
1

+ey

+ > t—1\’ RAT
= (1= (=) )T - D
Btey

Bres g 1\% o
JE ::/ <t> t"TT(t — 1)dt.
1

+e4

where

Therefore, it suffices to prove
(13.15) I > J*  for sufficiently small § > 0.

We now consider the signs £ separately.

Case |. The sign +. By and [I) of [Proposttion 130, 7~ (s) is decreasing for
s > B. Therefore, by recalling 6 > %, we have

B2 t—1 0 PN
It > / (1 — () )t”T‘(t —1)dt
B+1 ¢

B\ (t _ 1)K+1
By substituting s = B + 1 and s = B + 2 and then taking the difference, we have
B+)™MTE+1)> B+ )T (B+1) - B+ T (B +2)

_ B+2 ~,R ~ ~ R
:A/ ”twdtzf A= (B-1)fF
B+1 (t—1) B+1 B4+1
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and so

o~

Ir>0-3HT@E+1)>0-3))=—F-1F
B+1

On the other hand, by , by choosing § small so that 6 > &, we have

B+l 1\®
J* :/ (t> T~ (t — 1)dt
B+1 . B+1
—B/ = t—le”ldt<59B/ dt = FFO(5 —
By recalling the definition of 5, we have
B=Pr=Burs 1 as6\0
as proved in [Proposition 12.4. Therefore, we have
I'>B-1F J < (B-1) and <1 aséd\,0

and (I3T3) holds when + = +.
Case Il. The sign —. By and ([C377), we have

I~ > /;H (1 - (T)i)t2f+(t —1)dt
() e

_ 2\3 AB as R+1)
—(1—<3>2>A/B (t— 1) Faq
DhE(B-7-57)
%%%< )
g

By and (370) again, and takin
E=%+6<9—%(9—%)
1

(recall that 6 > 3 and so § — £(6 — 3) > 3), we also have

6 small enough to make

By _1\? . . B ~
J- :/ <t1) t"””TJr(tfl)dt:A/ 00— e
1

t 1
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‘We thus have
J =0 asd 0.

By recalling the definition of B, we have
B=Pr=Prrs =1 asd\0
as proved in [Proposition 12.4. Therefore, we have
I_%(l—(%)%)%>0 and J —0 asd\,0
and (C3T3) holds when 4+ = —. O

14. COMPLETION OF THE PROOF OF THE ROSSER—IWANIEC SIEVE

‘We now move on to the completion of the proof of the Rosser—Iwaniec sieve. The
remaining task is to estimate the sum

Z>p1 > >py
P1PmP <D (1<m<n, m=n (mod 2))
P Paph>D

defined in (6). Recall that
> wpV(p) if n =1,

y1<p<z
Z wp)V,_1 <,p) ifn>2and s> p—¢,
z p
Yn SP<2p,
as proved in Cemma 7. Let us introduce
Tn(D,2)= > Vu(D,2).
1<n<N
n=N (mod 2)

Lemma 14.1. For D,z > 2, n € N and w € Q(k, K), we have

n

Va(D,2) <

n!
where

log K
L=L K) =kl 1 1+ —).
(2,5, K) = rlog log 2 + og( * log2>

Proof. We have
Vn(sz) < Z w(pl"'pn)v(pn)

Z>p1>>Pn

< > wppa)

Z>p1>>Pn

< (X))

p<z
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Since w € Q(k, K), we have

ZW(P) < Zlog‘(l —w(p)) ™" =log Kg; < klog izig + log (1 + 10;)

p<z p<z

and so the assertion follows.

Lemma 14.2. For v > 0 and N € Z>, we have

R

N

2\&

Proof. The first bound is obvious. The second bound can be obtained by
N o 1 m N ©0 m N

= 2" X gVm x
2T W M

This completes the proof.

Lemma 14.3. For D > 2z > 2 with s > 3, N € N and w € Q(k, K), we have
Tn(D,z) < exp(—slogs+ slog L+ s+ L+ O(log2s)),

where the implicit constants depends at most on k.

Proof. Since we have
s>pf+n = V,(D,z)=0,
we have

Tn(D,2)= Y, VuD,2)= > Vu(D,2).
1<n<N s—pB<n<N
n=N (mod 2) n=N (mod 2)

By Cemma T4, we have

L" = L"
Tn(D,z) < Z P Z e
n>s—p n=[s—gl+1
Since £ > 0, by Cemma T4, we have

rls=hl+1 P
TN(D,Z) S me .

By using the bound
n! > exp(nlogn —n)
obtained by

’ﬂ

Zn— — and so n!z(e) = exp(nlogn —n)

and the bound [s — ] +1 < s— 3+ 1 < s, we have
Tn(D,z)
< exp(—([s = 8] + 1)log([s — B+ 1)+ ([s = B+ 1) + ([s = B + 1) log £ + L)

< exp(f([s — B8]+ 1)log([s — B] +1) +slog£+s+£).
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If B < s <28, we trivially have
—([s =B8]+ 1)log([s — B] + 1) = —slog s + O(log 2s)
If s > 20, since [s — B]+1>s— > >1, we have
(s — 8] + 1) log((s — 8] + 1) < —(s — B)log(s — B) = —slog's + O(log2s).
Therefore, we have
Tn(D,z) < exp(fs log s+ slog L+ s+ L+ O(log 25))
This completes the proof.

Lemma 14.4. For N €N, D,z > 2 with s := 82 ¢ [, A € (0, A,) with

log 2z
Aq = Ag(x) 1 ifk> 3,
= KR) =
oo L oifo<k<l
and a real number d with
7
14.1 d
(14.1) v

and w € Q(k, K), we have

Tn(D,z) < V(2)(Tx(s) + CeV  Ex(D, s)(log D)%),
where the function En(D, s) is defined by

d

57\’ monriat
Ex(D,s) =11 T
WD) = (14 g ) SR

with
L. + if N is odd,
"1 — if N iseven

and the constants C' > 1 depends only on k, A, d.

Proof. We choose § in (I3) based on s and A so that Cemma T33 with
(0,4+0) if k> %,
0:=1-A0Ng+1(Ag—A)€
(3, 4+00) fO0<k<i
i.e. the inequality

NN | 1-Ag+3(8p—A) N P
(14.2) E/ (t) t"TT(t — 1)dt < "' (s)

holds for s > 5+ ..
We also take O > 0 fixed for a given x, A, d such that

1 2

14.3 -_— > -,
(14.3) 0, d

2 3
14.4 = LA A
(14.4) P + g < S0
which is possible since

4 3

by the assumption (IZ-T)
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We next show a preliminary estimate. Indeed, this estimate proves the assertion
when D is small or when s is large. Let
o = (log D)é (loglog 27D).

For later necessity, we prove an estimate bit stronger than the lemma.

Claim 14.5. When s > 8 and
(14.5) log D < ClKeK or s> o,

we have

e\/?

Ty(D,z) < V(D)

. Ex(D,s)(log D)2
logD e N( ,s)(og ) )

where the implicit constant is independent of C if log D > C, K°x.

Proof. Since w € Q(k, K), we have
V(D)™' < K(log D)".

Thus, by [if] of [Proposition I3.1, we have
D). —EN(D,s)(log D)~
V(D) oo En(D.5)(log D)
= V(D) L e'® 1+ s Sﬁ‘”“fi(s)(lo D) &
B logD o log D &
(14.6) )
> exp| —slogs — sloglog3s + slog 1+57 + VK
log D
+O<logK+loglogD+s>)

since we have s > 8 by the assumption. We consider two cases separately.

Case A. log D < C’lK@K. We use Cemma T43. We have

log 2z K
£ =kl log( 14+ ——
(14.7) 08100 T °g< + 10g2>

< loglog D +log K < log K.

When s < K2 (log K) !, by Cemma 143 and (IZT), we have
Tn(D,z) < exp(—s log s + sloglog 3K + O(log K + s))

< exp(—slogs — sloglog3s + %\/E)
1 VK
' logD?

< V(D) En(D,s)(log D)™ 2.

When s > K%(logK)_l, we have
201 (log 5)20

10gD<<K®K < s log s

and so
d

slog(l + s> > sloglog 3K + 2sloglog3s + O(1)
log D
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by using
d—20g >0
assured by (IZ23). Thus, by Cemma 143 and ([Z8), we have
Tn(D,z) < exp(—s log s + sloglog 3K + O(log K + s))
d

< exp(slogs — 2sloglog 3s + slog(l + loZD) + %VK + O(s))
1 VK
< V(D)- ¢ En(D,s)(log D).
log D N

Therefore, the claim holds.
Case B. log D > €, K®% and s > . In this case, by (I272), we have

log K

Z loglog27D)| 1+ —————
< (loglog )< +loglog27D

) < loglog27D.
Also, since s > o = (log D)é (loglog 27D), we have
d

s > (log D)% and lofﬁ > (log 3s)“.

We thus have
log £ <logloglog3D + O(1) < loglog3s + O(1),

d

s
1 1+ —— ) >dslogl .
s og( +logD> > dsloglog 3s + O(s)

We also have
¥ < loglog27D < log s.
Therefore, by Cemma 143 and (I[28), we have

Tn(D,z) <exp (—slog s+ sloglog 3s + O(s))

< exp (slogs — (d—1)sloglog3s + slog <1 + IW:D) + O(s))

Ex(D,s)(log D)2
logD o ~(D, 5)(log D)

< V(D) -

since (IZ) implies
7
Ay — A
Therefore, the claim holds even for this case. O

d> > 7.

We now prove the lemma by induction on N.
Initial case N = 1. For T;(D, z), we have
T,(D,z) =Vi(D,z) =0 fors>p+1.
Thus, we may assume 8 —1 < s < f+ 1. By Cemma 71 and Cemma X4, recalling

yi =D77 and z=D" >y,
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we have

T(D,z) =Vi(D,z) = Z w(p)V(p)

y1<p<z

= > WV

max(y;,2)<p<z

=V Y by

max(yy,2) <p<=

=V (2) <V(m?/’<(iy)1’ 2) _ 1).

Since w € Q(k, K) and z > max(y;,2) > 2, we have

log z " K log 2 "
Ty(D,2) <V o) !
1(D,2) < (Z)((log max(y1,2)> * log 2 <logmax(y1,2)>
logz \ " K (logz\""
+
log 1y, log z \ log y;

( K41
(6+1 + (ﬁ+1) )
v i)

s"log D
KB+ 1)n+1>
s"log D '
For,@—1<s<ﬁ—|—1,byand [37), we have

(B+1)"*1s™ < S;f\,—l{—‘rlj'—\w—‘r(S).
Therefore, for large C' > C(k, A), we have
(148)  Ty(D.2) = Vi(D,s) < V(2)(Ty(s) + O(KS" 1T (5)(log D) ™)).
This is stronger than the assertion and proves the case N = 1.
Induction step from N — 1 to N with N > 2. For the sum V,,(D, z), we have
s>F+4+n = V,(D,z) =0

and so we may assume s < § + N. By Claim 141, the assertion follows when
(Z3) with C depending on C;. From now on, in this induction step, every implicit
constant is independent of C';. We subdivide the remaining case into two cases:

e Case l. When S+ ey <s<oandlogD > ClKeK.

e CaseIl. When B—1<s<B+1, logD > C,K®% and N is odd.

where C is some large constant C; = C(k, A).

Case |. When B +eny < s<o andlogD > ClKeK. We have

Ti(s

2, = printesrs) - prinGEey) — pr =4 forn=N (mod 2)

and
Vi(D,z) =0 if N is odd.

By Cemma™T, we have

Vo(D,2)= Y w(p)Vu, <D,p> for n > 2 with n = N (mod 2).

Yn <p<z p
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Note that
log % B log D

P<Yp — =
log p log p

and so we can write

85

D

V,(D,z) = Zw(p)Vn_l (D,p> for n > 2 with n = N (mod 2).
p

p<z

By taking the sum over n, we have

Tn(D, 2) >

V. (D, z)

1<n<N
n=N (mod 2)

>

Vi(D, 2)

2<n<N
n=N (mod 2)

= w(p)

p<z

=> w(p)

p<z

p<z

= ST

2.

2<n<N
n=N (mod 2)

>

1<n<N-1
n=N-—1 (mod 2)

; )
—D -
p

Furthermore, note that the parameter z appears on the right-hand side only in the
summation condition on p. Thus, we can decompose as

(14.9)
where
> =
1
p<Do
> =
1 1
Do <p<Dr~
2.,
D7 <p<z
and
1 log 2
‘= max| s —
g 7 log D

We first consider the sum

2= X

1
Do <p<D

-1
) ) >1 andso D~ = min(z,

Ty(D2)=)  +D> +> .

2)-

w(p)Ty -1 (?,p)

1
=
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Note that we may assume o > 7 > s since otherwise 21 is empty. Since

log 2 logD
p<zands>f+ey = r_ 98 —1leln_q,
logp logp
D/2 = D'~

and p < D/2 assures D/p > 2, we can use the induction hypothesis to obtain

(14.10) Zl < ZH + le

where
o V(p) log D
Zu =V(z) 1 Z 1 w(p)WTN—l <10gp -1/,
Do<p<Dr7
-A
— VK V(p) D log D D
212 =Ce¥"V(z) 1 Z 1 w(p)v(z) ENl(p’ ogp 1){log )
D7 <p<DT
with

‘= max| s 1710g2 -
T = x| s, log D .

log2\
<1 08 ) <2«s andso TKs
log D

if D > C; > 4. We estimate the sums »,, and >, separately.
For the sum }_,,, we use CemmaR7. By Proposition 9.3, we have

Note that we have

t"Tn_1(t—1) = <1 + t_11> (t—1)"Tn_1(t—1)

is decreasing and continuous for ¢ > 7 > 1. Thus, Cemma 87 gives

v ( / e 4 B VKT (r— 1) (Z))

log D7
By of [Proposition 9.3, we have

%, < v (mo+ SRR (E))

By CemmaT32 and [3), [&] of gives
Ty_1(T—1) <T) < (1 — l)ﬁfnﬂij(T -1) (T>
s

S

< (r =1 rogen ™70 (1)

< < u 1> (clogeo)s™ "TIT(s)
P

since t* T TE (t) is decreasing. Thus, we have

> SV (TN(s) +O(<T = 1>K(02 1ogeg)w>>_
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When k > %, we have

T>s>03>1 andso (Tl> < 1.
r—

When x < %, we have

log 2 -t 7 \" log D\ " "
> 11— d < log D)".
T= ( logD) and =o (7—1) ~ \ log2 < (log D)
Thus, in any case, we have

(14.11) <

‘We thus have

3> <V (TN(T) 40 ((03 log eU)IfTE“+1fi(s)(log D)Ao»,

(The denominator o in the error term is kept for later necessity.) Note that

u 1> < (log D)1=20).

T =

o*logeo < (log D)% (loglog D)*.

Thus, we arrive at

(14.12) > LSV <TN(8) + O(bglingfEN(D7z)(log D)‘A>>

since

3
a<AO—A

assured by (IZ70). This completes the estimate of ).
For the sum ),,, by writing
log D
8, = ,
P" logp

note that
D log D D\ 4
p logp p
A
D s
— (log D) 2E s —1 P
(Og ) N1<p75p >(3p_1>

= tog 0) 2 (1+ (_D”d)< LR, 1) ()A

log; sp—1

Since

1 1
when D= < p < D7, we now have

(8 _ 1)d sp—1 s (8 _ 1)d—1 sp,—1 Sd sp—1
14+~ 2 < (1222 7 < (1 P
( * log % =\ log D = log D
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—A
D logD D
o (5522 0)(e2)
p logp p
S

d s,—1 A

- s » PP

< (log D) A(1 + long> (sp—1) +1T$(sp - 1)(5 i 1) .
P

and so

Therefore, by writing

d s—1 A
E s  \R—kHlpE S
b= (14 ) o ()

D log D D\ 2 log D
ENI( = —1)<10gp> S(logD)_AQLjF)(% )

we have

p’ logp log p
This gives

T et T (),

1 1
o T

Do <p<D

We use Cemma 88. We need to check g7, (#)t" is decreasing for 7 < ¢ < o. Since
N o PN

14.14 bttt =1+ — t= )" T -1 ——

aan) g = (14 g ) =0T ()

it suffices to show

td t—1 N =R
1 t—1)" T -1
(1+55p) (- UTTC-)

is decreasing. For the later necessity, we consider a bit more general function

£ (t+)"\' re1mt
A(t)=(1+ ) "7 T (t) fort>0ande=0,1.

Note that .,

t—1
¢ i~
Afg-1)=(1+ — t—1)" T (-1
1( ) ( 1ogD> ( ) ( )
and so, by recalling (IZ14), we have

AT 1)<t_t1>n+A

(14.15) AN . A
= (1 ~ )T (- 1) —— = qp(t)t".
(1+mp) -0 Ta-0() = dbr

Claim 14.6. Assume that D is sufficiently large in terms of xk and A.
(i) For e =0,1, the function AX(t) is decreasing for t € [B + e, o].
(ii) The function q},(t)t" is decreasing for t € (8 + ¢4, 0].

(iii) For s € [3+¢€4,0], we have

/: qp()dt" < (1 - 1>1_AA5—“(3).

g
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Proof. We first prepare an estimate of the derivative (A t))’. For t > 0, we have
t+e)"\" (t+e)"\' t+sd
14+ —7"-— =11 tl
(( * gD T egD & lo gl)
(14 (t+ )"\ log (t+¢)
N log D log D
< (1 (t+ E)d t (t+e) d (f;;,)j
< + log +d
log D log D 1+ (t+e)

1 gy 1 e x
log(1 = — > dt = —— fi >0,
og(1 + ) /1 U _1+:c/1 1+ o=

dt(t+¢) 1
1+ ¢ (t+e) log D

Since

we further have

(5 e )

for t > 0. We then consider the range ¢t > B—i— €4. In this range,
ETEW)) = —RETT(t—1).
Thus, by differentiating and using ([Z1H), we have
(AZ (1)
t+)\ riimte )
= 1 tTT(t
(( " logD )
49"\ mrimt (t+)"\'\ friat
=1+ —= t T (t 1 tT (¢
<+ log D ( ) + + log D ®)
-~ (t + 5)d ! RAF
—k(1 T (t—1
H( + log D T ( )
t d
S~ t
%%d+U< +(+5))ﬂﬁﬁ¢uﬂ%<r+(+5)>

log D log D
N t+)\ 2z d+1 tTH(t) (t+e)?
—k(1 tT t—1)(1—- ——=——1 1 .
K( + log D ( ) K TT(t—1) og\ 1+ log D
By using [i], [ifi] of Proposition I3.1 in the form
tTH(t) t— 1\ 1 1
<
) t

TF(t—-1 log et log et’

we have

d\ t
(14.17) (AZ(@1)) < —E(1+ (’io*g‘g ) FTTt—1)(1+ RE(t)) fort> B +ey

with

(t—i—s)d).

1

+

—1 1
R (t) < og( + log D

log et

We now prove the claim.
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[[]. When ¢ < (log D)Tl'i7 we have

(t+ E)d
log D

1
2

R¥(t) < < logD™? < (loglog D)

When (log D)ﬁ <t <o, we have

log(1 + (loglog D)%)
loglog D

N|=

RE(t) < < (loglog D)™ 2.

Thus, in any case, we have

(t+ s)d
log D

Thus, for D is sufficiently large in terms of x and A, we have
(AZ(1)) <0,

This shows that Aai(t) is decreasing for t > §+ €4

Nl=

(AZ@)) < E(l + )tﬁf?(t —1)(1 4+ O((loglog D)~ ?)).

[ii]. By (IZ1H) and the above proven [}, ¢/ (¢)t" is decreasing for ¢ € [§+5¥+1, ol.
Thus, it thus suffices to consider the range t € (8 + e, 8 + 5 + 1]. In this range,
we have t —1 € (B +¢e4,8+¢e4] and so (t — DT TF (£ — 1) is constant. Therefore,

it suffices to show
d t K+A
1+ t o
log D t—1

is decreasing for t € (B+¢€4, E—I— €4 +1]. By taking the derivative and using (I218),
- N NN
log D t—1
N N NN/ g\ R
=1 1 —
() (1) )+ (C0men) ) ()
K4 A N e
i () (753)
(t—1) log D t—1
+(d+1) 1+i t o K+Alo 1Jri
log D t—1 & log D
K+ A N e
= — 3 1+
t log D t—1
+(d+1) 1—&—i t o HJFAIO 1+i
log D t—1 & log D

A N NS ]
Y 1o DY)
t log D t—1 log D

If D is sufficiently large in terms of x, A. This shows [ii}.

[[i). When ¢ is sufficiently large in terms of x, say t > t(k, A), we can show

" td -1
1 t)y> (1 .
JrRO()_( JrlogD)
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Indeed, when t, < t < (log D)é, we have

1 ¢ 1 ¢ 4\
1+R§(t)z1_21og<1+bgD>21—2 2(1+ ) .

When (log D)é <t < o, we instead have

log(1 4 (loglog D)%) 1 7!
+ g glog

> > — >
1+R5(t)_1+0< log log D 252 1+10gD

provided D is sufficiently large. Therefore, by (IZ14), we have

d t—1 N ¢ E—i—ll
) t“T”F(t—l)_—’;%AT(t—l)( > -

t
log D

(w5 < -=(1+ -1

By (IZT3), this gives

R = KAT (£ — 1) <) -

Therefore, we have in the range s >t as

[ < [(azor () e

< —(1 - j,)A [ @iy

We next consider the range § + ¢4 < s <t,. By the above proven case, we have
o 1 1-A
/ qh(t)dt" < (1 - U) AF (tg +2)
t

ot2
1 1-A " )4\ to+2 o
- (1—) (1+(0+ ) ) (to +2)" 1 T% (2 + 2).

o log D
By of Proposition I3.1], we then obtain
- 1\ 1A ] b\t
/ ab(t)dt"™ < <1 - ) . (1 UL ) T (8
b2 7] (tylogety) log D
1\ 1 to+ 2P\
<< <1 _ > 5 <1 + ( 0 + ) ) SN+1Ti(8)
g (tO lOg eto) 1Og D

When D is sufficiently large in terms of x, A, ty, we thus have

TN SRS A ey
qp(t)dt"™ < 2 1- p s (s).
¢

ot2 0
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By (@) as we made available by choosing ¢ small, we have

to+2 to+2 td t—1 LA n K+A dt
Lt)dt" = / 1 t—D)"" T -1 —— —
[ e = [T (1 ) e- 0T e-n()

—A
(to+2)d to+1 /t0+2 t_l 1 ’,%’\:F
<14 -—-" T tVTT(t—1)dt
_< - log D " s t ( )

3(A0—4) d~ to+1
1 2 2
<(1- 1_’_@
to+2 log D

to+2 /1y q 1-Ag+3(Ag—A)
X n/ (t> t"TT(t — 1)dt

L(Ay—A) d~ to+2
1 2 (to +2) Rl
<(|1-— 1+ —— T .
—< t0+2> ( T TogD ) s ()

When D is sufficiently large in terms of x, A, ty, we thus have

e VA Haey 1Y) e
R ([ 1-— 1 - A
[aows(-0) (-gm) (rog)) e

since
L(A—Ay) 1-A
1 6 1 1-A 1
1-— >1- >1-— >(1—— .
to+2 to+2 o o

By combining the above estimates, we obtain

v N2 L\ Ha-ay) )
Fef1-= LD 1- =
[anar<(-2) oorof(ie ) of3)
1 17A A+1/\i 1A—AO 1
< - — H — — —
_<1 a) s"TT (s){l 3710 +O<t(2)>}

< (1 - 1)1:@“?*(5) < (1 - 1>1AASE(5)

g g

by replacing t, large enough in terms of x, A. This proves forall s > B4en. O

By of CTaim T4 6, we can apply Cemma R to ([ZL3). This gives

I e T T

By of CIaim T4 A, this gives
(14.18)

ZIQ

< CeVEV(2)(log D)2
(1= 1) a2 DR (1

log D7 S




THE ROSSER-IWANIEC SIEVE

By (IZT3) and of [Proposifion 13.1], we have

QE(T) Z " o 1+ Td T_I(T _ 1)E+1fi<7_ _ 1) T H+As—f€
logD% s)  logD log D T—1
< o? log ec 14 4 \T g+1fi( ) T A k
s
(log D) log D 4 T

< o? log eo 14 5% Ssﬁf’”lfi(s) T A
(log D) log D T—1 ’

by the monotonicity of t* 7% (t) and 7 = s when s > 2. By (@), we have

() () ()

K A
S( u ) (logD> < (log D)~ (Bo=8)

T—1 log 2
and so
F K K2 31 d s .
e QD(T)I (T> « Ko logeo <1+ s > R (o)
log D7 \8 a(log D)=° log D
1 1 Sd s N
(1 nfraJrlT:i:
< loglogDa( + logD) s (5)
since 5 3
— 1+ = <Ay — A
6, 4o

as in (@3). On inserting this estimate into ([@1X), we obtain
>, < CeVEV (2)En (D, 2)(log D)~ »

o ((0-2) " oliiess))

This completes the estimate of .
We next consider the sum

> = Ty(D,D?).
For this sum, we can use Claim 143 with z = D7 to obtain
VK
1 e
V(D) -
Zo <V(D) logD o

When s > 3 + ., by [{i] of CIEim T4 8, we have

En(D,o) =0 "Af(c) <o "AF(s) < Ex(D,s).

En(D,o)(log D).

When f+exy <5< BJr €4, we also have
Ey(D,0) =0 "Aj(0) <o "AF(B+ex) < 0 "Ag(s) < Bn(D,s).
‘We therefore have
1 6\/?

: C  En(D,s)(log D)2
gD o ~n(D, s)(log D)

(14.20) Y, <V()
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since ¢ > s in the current case. This completes the estimate of ).
We then consider the sum

Y- X v (3o0)
DT <p<z
This sum is indeed empty unless DT = min(z, D/2) = D/2. We thus may assume
D* =2>D/2=D"" b
and so

(1421) B+EN§S<WS

log D

assuming D > 4. This happens only if N is even. Also, since
1
B>1 ifk> 3
this situation happens only if x < % for large D > D(k). Thus, we may assume

min(z, D/2) = D/2, the bound ([Z=2T) holds, N is even and xk < % Also, if

D/2 < p, we have D/p < 2. Therefore, the summation condition p; ~pf < D makes
D
Vn<,p> =0 foroddnwith3<n<N-—1.
p
Therefore, we have

Y- X wom(D).

D/2<p<z
For D/2 < p, we further have

0< 1 (ﬁp) = Y w0V =Y eV =1-Ve) <1
(D/p)B+1 <g<p

Therefore, we have

=
SIS

S5 Y e 3 togi-wl)=log 2

D/2<p<=z D/2<p<=z

Since w € Q(k, K), by using (Z20) and s > 8 +¢,, > 1, we have

log 2z K
<klog ————5~- +log|( 14+ ————F~
2, s wlog 2, g< )

log max( log max(2, £)
1 K
< klog Og; +log<1+ D>
log 5 log 5
g2\ ' K K
<kl 1-—
_H0g< 1ogD> logD<<logD

provided D > 4. Since k < % and s > 1, we have
V(2)~' < K(log D)" < K(log D)? = K(log D)%
By recalling s < 2 by ([@=21), we arrive at
Zz < K(logD) ' =V (2)KV(z) '(logD) ' < Kzf_(s)(log D) %o
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and so
S, < V(e) K*T(s)(log D)~
(14.22) = V(2) - K*T*(s)(log D)~*(log D)~ 40~
1 vK
loglogD o N

This completes the estimate of ) _,.
By (I29), (2-1m), ([2-12), ([2-19), ([2220) and (I223), we have

Tn(D,z)

v nes Cm ((r- DA +0(ioz107)) |

Since

1\ 11 1-A 11
1—— Ol ————=— ] <1- 0 -] <1
( a) N <1oglogDa> - o i (loglogDo>
for sufficiently large C, we obtain the assertion for the N-th case.

Case Il. When g —1<s<pB+1,logD > CIKGK and N is odd. In this case,
(14.24) Ty (D, 2) = Ty(D, D7) + Vy(D, 2)

We apply the above proven (I223) to T (D, Dﬁ) to obtain
Tn(D, D7)
< V(D)

CeV® Ey(D, D7) A 1 1
Ar+ 0+ SRS (1-0) 40 ) )

Since w € Q(k, K), by using Cemma T3, we have
(14.25)

K k+1
e e GRSt}

S

(-
v (28 me+ 0+ K2 g )
((

log D
VK

A+ 1) Ty(B+1) + O<1OgligDeaEN(D,s)(log D)—A)>

provided

assured by (IZ). We also have

B+1 N R
Ex(D,f+1) = (1 + lﬁo;;) (B+1)F 7B 4+ 1)
B+1

= exp ((ﬂ +1) log<1 + M)) B+ 1) HITEB 4 1)

95
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_exp<810g<1+b;D)+O(log1D>>sgm+1fi(5)<ﬂil>n
s " 1

=\5+1 En(D, log D

(751) 209 (+0(555))

~(525) Evw (0 ts )

by the monotonicity of s*'7T7(s) and have

quﬂL)<vq@<5:1>K<1+ KS)

AN

log D
B+1\" 11
= _— 1 _—
V(Z)< S +0 loglog D o
since w € Q(k, K) provided
1 1
—+-< 1
60, d°
Therefore,
) VE 1-A
vorn S B (1-7) ()
o o
(14.26) (log D)

B (1) ofidnt)

By (@23) and (IZ2H), we have
Ty(D, D7)

(14.27) = V(Z)(<BS+1>HTN(5+ 1)

OB (1) o))

For Vi (D, s), we use (@) to obtain

11 A
. < JE—
(14.28) Vi(D,s) <V(2) (Tl(s) + O(loglogD JEN(D, s)(log D) ))
provided
1 1
—+ =< 1-A.
6, d°

By combining ([2=24), (I227) and ([Z28) and using

B+1\"
(Z58) Ta 1)+ i) = 1)
which holds since N is odd, we have
VK 1-A
Ce¥ " En(D,2) 1 1 1
Tyn(D,z) < T — " (1-= _ .
w( ,Z)_V(Z){ n(s) + (IOgD)A (( O’) +O<10g10gD0)>}

Thus, for sufficiently large C;, we obtain the assertion. O
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Lemma 14.7. For D > z > 2, A € (0,A) with
1 ifk> 3,
Ay = Ag(k) =

if0<rk<3

N|=

and a real number d with

Ay — A
and w € Q(k, K), we have
VH(D,z) < V(2)(F(s) + CeV  E(s)(log D) ™2),
V(D z) > V(2)(F(s) — CeVF E(s)(log D))
with the Rosser—Iwaniec weight, where the function E(s) is estimated as
E(s) = exp(—slog s + sloglog 3s 4+ O(s))
for s > 1 and
E(s) = exp(—slog s — sloglog 3s + slog ek)

for 1 < s < (log z)% and the constants § > 0 and C' > 1 depend on k, A, d.

Proof. Recall that
VED,2)=V(2)£ > VuD,2)

n>1
(1429) n=vy (mod 2)
=V(z) lim Tn(D,2).

N —o00
N=v4 (mod 2)
When 1 < s < (log z)%, we have

d s d+1 d
1+ s < exp i = exp i <e
logD,) — log D logz ) —

and so the assertion follows by Lemma T4 4 and of Proposition 13.1. When
1 1
s> (logz)d, i.e. s > (log D)3+, we use Cemma T43. Since w € Q(k, K), we have

V(z) < K(log D)" = exp(O(log K + loglog D)) = exp(O(log K + log s))

We also have

log K
$<<loglogD+logK<<10gK+log3s(10g35)(1+ o8 >

log 2s
Therefore, CemmaT473 gives

Tn(D,z)

< V(2)(log D)~ %
(14.30)

log K
x exp| —slog s + sloglog3s + O s—i—SOg +log K
log 2s

< e\/fV(z)(log D) ® exp(—slog s + sloglog 3s + O(s))
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1
since if s < K3, we have

slog K

+log K < K3 log K
log 2s

1
and if s > K3, we have

slog K

+log K < s.
log 2s

On inserting ([2=30) into ([Z=29), we obtain the assertion even for this case.

O

Theorem 14.8. Consider

e A sieve data (A, P,z, X,w,r) such that w € Q(k, K) with k > 0, K > 2.
e A level of weight D > z > 2.
e A real number A € (0,4) with

Ag = Ag(k) = {

and a real number d with

N
|
i)

d >

Ay A
We then have
S(A,P,2) < XV(2)(F"(s) + CeVEE(s)(log D) ™) + R*(D, 2)
S(A,P,2) > XV(2)(F(s) — CeVEE(s)(log D) ™) + R™(D, 2)
with

where the function E(s) is estimated as
{E(s) = exp(—slog s + sloglog 3s 4+ O(s)) for s > 1

=

E(s) = exp(—slogs — sloglog3s + sloger) for1l < s < (logz)
and the constants § > 0 and C' > 1 depend on k, A, d.

Proof. 1t suffices to combine CLemma 33 with Cemma T4 7

15. SIMPLEST APPLICATIONS TO TWIN PRIME PROBLEM

We check the power of MThearem T4 8 by applying it to twin prime problem.

15.1. Sieving n(n + 2). Let X > 4 be a real number and let

A={nn+2)]1<n<X}.

As the sifting set, we use the set of all primes:

P = {p : prime}.

For a square-free d, we clearly have

| Agl = > 1= w(d)X +r(d),
n<X
n(n+2)=0 (mod d)
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where

w(d) = @, p(d) = #{z (mod d) | z(x +2) =0 (mod d)}

and
Ir(d)] < p(d).
By the Chinese remainder theorem, we have

{ 1 ifp=2,

PP)=1\ 9 ip>3

By Mertens’ theorem, for 2 < w < z, we get

500

ol 2 (-2)")
~en( 3 o(2))

1 log 2 2
log w log w
Namely, we have w € Q(k, K) with kK = 2 and a suitable K > 2. We then apply
the lower bound given in Mhearem T4 8. To this end, we calculate F~ (s) for small
s. Since k = 2 now, the parameter 5 is determined by § = p + 1 with the largest
zero p of TQ,Q(S). By Proposition 10.8, we know that
roo(s) = 8" — 65° +9s — g
and so
p = 3.8339865967 ... € (3.8,3.85) and [ € (4.8,4.85).
By with § = p+1, we have
A>0 and B=0.

By Proposition 9.4, we have
_ s t
$*T (s):sQ—ZA/ ———dt for f<s< [B+2
s (t—1)
and so

F_(s)zl—T_(s):%/ %dt>0 for 0 < s < pB+2.
s Jg (t—1)

(Since T (s) is decreasing, we have F'~ (s) > 0 for s > 3.) We thus take
D=(X+2)® and z=DT% = (X +2)T®

which gives
log D
S =

log 2z

=4.90€ (B,8+1).

We also have

R™(D,2) < Y pld)

d<D
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SDZw(d)

d<D

<D[[-wp)™

p<D
< D(log D)?
450 2
< X0 (log X)*.
Thus, by Thearem T4R, we have
S(A,P,2) > XV (z) — ¢ X5 (log X)?
with some ¢, ¢ > 0 provided X is sufficiently large. Finally, we have

—1
V(z) > (553) > (logz) "> > (log X) 2,
we obtain
S(A,P,2) > X (log X) 2.
When n(n + 2) is counted in S(A, P, z), we have
A <X 42 and D <pro<x 42
and so
max(Q(n), Qn + 2)) < 4.9.
Since the left hand side is integer, we get
max(Q(n), Q(n + 2)) < 4.

Namely, we obtained the following result:

Theorem 15.1. There are infinitely many pairs (n,n + 2) of 4-almost primes.

15.2. Sieving p + 2. Let X > 4 be a real number and let
A={p+2]1<p<X}.
As the sifting set, we use the set of all odd primes:
P = {p: odd prime}.

For a square-free d, we clearly have

Mol = Y 1=w(dr(X) +r(X;d, -2),
p<X
p=—2 (mod d)
where
w(d) = ——
Cop(d)

By the Bombieri—Vinogradov theorem, we have
> Ir(Xid, -2)| < X (log X)
d<D
provided
D§X%7€ for e > 0.
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By Mertens’ theorem, for 2 < w < z, we get

v I (-55)

(£ () )

w<p<z
p>2

el £ o(2)

wp<z
p>2

< (olm)) ()

Namely, we have w € Q(k, K) with k = 1 and a suitable K > 2. We then apply
the lower bound given in Mhearem T4 R. To this end, we calculate F~ (s) for small
s. Since k = 2 now, the parameter § is determined by 8 = p + 1 with the largest

zero p of r; 1(s). By [Proposition 10.8, we know that

ria(s)=s—1

and so
p=1 and pB=2.
By Proposition TT§ with § = p + 1, we have
A>0 and B=0.
By PToposition U4, we have
Sodt
sTf(s):sz/— for2<s<4
, t—1

and so

t—1
(Since T (s) is decreasing, we have F~ (s) > 0 for s > .) We thus take

F (s)=1- /7>0 for 2 < s < 4.

D:(X"—Q)E SXE*E and Z:Dﬁ:(X_i_z)ﬁ

which gives
_logD
~ logz

=2.2¢€(2,3).
We also have

< Ir(Xid, -2)| < X(log X) 7
d<D
Thus, by Theorem T4H, we have

S(A,P,z) > en(X)V(2) — ¢ X (log X)™°
with some ¢, ¢’ > 0 provided X is sufficiently large. Finally, we have

V(2)

Vi(z) > <V(z))_ > (logz) ™' > (log X) 1,
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we obtain
S(A,P,z) > X(log X) 2.
When p + 2 is counted in S(A, P, z), we have

and so
Qp+2) <43.
Since the left hand side is integer, we get
Qp+2) <4

Namely, we obtained the following result:

Theorem 15.2.
There are infinitely many primes p for which p 4+ 2 is a 4-almost prime.
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